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EXECUTIVE SUMMARY 
Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal-hydraulics field 

for design and safety analyses. To validate CFD codes, high-quality multi-dimensional flow field data are 
essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a 
unique capability to contribute to the development of validated CFD codes through the use of Particle 
Image Velocimetry (PIV). The significance of the MIR facility is that it permits non-intrusive velocity 
measurement techniques, such as PIV, through complex models without requiring probes and other 
instrumentation that disturb the flow. At the heart of any PIV calculation is the cross-correlation, which is 
used to estimate the displacement of particles in some small part of the image over the time span between 
two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, 
uncertainty quantification is a challenging task due to the use of optical measurement techniques. 
Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the 
measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the 
measured data. The main objective of this study is to develop a well-established uncertainty quantification 
method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, 
the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow 
loop and PIV system (including particle motion, image distortion, and data processing). Then, each 
uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a 
method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test 
results. 

MIR results are in the form of three-component ( 3 C )  time average velocities and Reynolds 
stresses. The primary focus of this Laboratory Directed Research and Development is to provide 
uncertainties on these quantities. 

Two independent methods for computation of uncertainty from two-component PIV measurements 
have been developed and are discussed. These are called the Uncertainty Surface Method and the 
Signal to Noise Ratio method. 

In the Uncertainty Surface Method, an algorithm is tested to determine the algorithm’s response to 
various uncertainty contributors, and the result of these tests (the uncertainty surface) is used to 
determine the uncertainty of each vector. The Signal to Noise Ratio method is based on the hypothesis 
that the image cross-correlation on which PIV is based contains information on the uncertainty, and 
that the magnitude of the correlation peak, if quantified properly, is all one needs to know to determine 
the uncertainty. 

In each case, the uncertainty of every vector (in space and time) is determined. This provides the 
fundamental information for the 3C uncertainty. This information is propagated to 3C uncertainty 
using the same stereo calibration information that is used to compute 3C velocities from two-
component vector fields. Once instantaneous 3C uncertainties are found for all space and time, these are 
propagated into the time-averaged velocities and Reynolds stresses using methods developed in this 
Laboratory Directed Research and Development. 

The uncertainty quantification method developed in this study will lead to high-quality MIR data with 
accurate and reliable uncertainty quantification, and it will be a tremendous asset to the ongoing efforts to 
validate advanced computational methods. The MIR facility has tremendous potential of becoming a user 
facility for basic and applied research by government, industry, and academia where accurate and reliable 
uncertainty quantification is essential for producing high-quality data for computer code validation. The 
benefit to Idaho National Laboratory will derive directly from the ability of the MIR Lab to produce 
reliable estimates of uncertainty for the velocity field data collected with the PIV system. PIV uncertainty 
is critical to the validation of CFD codes, but currently, no practical and accepted method exists for 
estimating the uncertainty in PIV data, as mentioned earlier. 
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PIV Uncertainty Methodologies for CFD Code Validation 
at the MIR Facility 

1. INTRODUCTION 
Significant challenges face thermal hydraulic design and modeling for advanced reactor concepts. There 

is a need for whole core system codes, which model the relevant physics and thermo-mechanics with local 
resolution to investigate the flow performance during operation and accident scenarios. Due to the 
complexity of the reactor core, only a portion of the core has been studied, specifically using computational 
fluid dynamics (CFD) to address key flow phenomenon of the lower plenum, core bypass, and the effects of 
graphite surface roughness (Johnson, Sato, Schultz 2010). CFD works well to investigate many types of 
flow behavior; however, for turbulent flow, it relies upon a single turbulence model to close the Reynolds 
Averaged Navier-Stokes equations and approximate a flow solution. In general, turbulence models have 
been developed to focus on a specific flow behavior, such as swirl, free shear flows, near wall flows, etc. 
Unfortunately, during reactor operation, many types of flow are present throughout the core, possibly 
invalidating the use of any one model. For this reason, it is critical to experimentally validate the turbulence 
models used in upcoming reactor designs with scaled thermal hydraulic data and known uncertainties. 

The Matched Index of Refraction (MIR) flow facility at Idaho National Laboratory (INL) is used to 
produce experimental velocity data for CFD model validation. The data is obtained by performing separate 
effects experiments, which replicate a flow as it travels in and around representative core reactor geometry. 
Previous studies, including the lower plenum (McIlroy Year 2010) and bypass flow (Conder Year 2012) 
experiments, have produced validation data that require uncertainty quantification. These studies use a 
velocity measurement technique called Particle Image Velocimetry (PIV), and uncertainty quantification is 
required for stringent experimental data and CFD model validation. Unfortunately, the uncertainty in PIV 
measurements is difficult to determine, and a standard uncertainty quantification does not exist. As such, the 
accuracy of past MIR measurements is unknown. Thus, a standardized methodology is sought to quantify 
PIV uncertainty. 

The main objective of this study is to discuss different uncertainty techniques being developed at Utah 
State (USU) and Virginia Technical University (VT) to quantify PIV uncertainty for the experiments being 
conducted in the MIR laboratory. The methodology described here permits future uncertainty quantification 
for MIR PIV experimentation for the purpose of data quality assessment. To do this, first a brief description 
of the MIR facility is given, including an overview of some important uncertainty factors. Second, the 
uncertainty associated with the MIR index matching technique is quantified. Third, a past experiment 
performed in the MIR facility is described, which requires PIV uncertainty quantification. Last, two PIV 
uncertainty methodologies are presented to evaluate the uncertainty of PIV in the MIR, and the details of the 
uncertainty methodology is described in detail in Appendix B. 

2. DESCRIPTION OF MIR FACILITY 
The MIR facility was constructed at INL to perform basic fluid dynamic research and measurement 

experiments, primarily using optical techniques such as PIV and Laser Doppler Velocimetry. It is the largest 
index-matching facility in the world and has been used to conduct a wide range of experiments, 
incorporating both flow visualization and measurement techniques, generally performed within complex 
models. The MIR facility also provides higher Reynolds numbers and increased spatial resolution compared 
to similar facilities. Stoots et al. (2001) provided a comprehensive review of the system, including an 
assessment of it capabilities; therefore, only a brief overview is provided here. 

Submersing fused quartz models in light mineral oil permits the flow to be studied in and around 
complicated geometries. Figure 1 demonstrates how refractive index matching causes the quartz to 
disappear in mineral oil. 
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(a) (b) 
 
Figure 1. Index matching of quartz and mineral oil—part (a) demonstrates the quartz outside the oil, and 
(b) demonstrates the quartz while submersed in the oil. 

The facility was modeled after a typical wind tunnel and was fabricated with a stainless steel frame. It 
consists of several components, including a settling chamber, a square contraction, and a test section, as 
shown in Figure 2. The settling chamber is comprised of a single stainless-steel honeycomb structure and 
several screens that straighten the flow and remove non-uniformities. The 4:1 square contraction is attached 
downstream of the settling chamber and produces nearly uniform flow at the entrance of the test section. 
Flow is driven into the test section by an axial pump that is powered by a 56 kW variable speed motor. At 
full capacity, this pump can drive nearly 0.63 m3/sec of mineral oil, achieving a maximum velocity of about 
1.7 m/s in the test section with a turbulence intensity of less than 0.5%. The test section is 0.6-m square and 
2.43-m long. It is made from a polycarbonate material, and contains large, optically clear glass windows to 
permit optical measurements of the flow. 

 
Figure 2. Matched Index of Refraction flow facility. 



 

 17

The MIR was designed as an isothermal facility capable of sustaining a precise temperature in its test 
section. Mineral oil is extracted from the main tunnel into a temperature control loop at a flow rate of 
269 L/min, where the oil is chilled by a glycol-cooled heat exchanger, reheated by a 10-kW resistance 
heater, and then plumbed back into the main system. When properly operated, the temperature within the 
test section can be controlled within 0.01°C of the index-matching temperature. 

When flow is desired within a model, oil is extracted into an auxiliary loop by a 7-horsepower pump. 
This pump is capable of pushing 1500 LPM (with approximately 20 meters of pressure head) into a model, 
where the exact flow rate is measured using a calibrated turbine flow meter. For temperature control, a small 
portion of this oil is plumbed through an auxiliary temperature control system and is configured similarly to 
the temperature control loop. The flow through of this sub-loop is measured by using a self-calibrating 
Coriolis flow meter. 

A traversing system is fitted along the test section, which permits translation of LaVision Imager Pro 
Plus PIV cameras to move in the vertical, stream-wise, and cross-stream directions. The traverse is operated 
by several programmable servo motors and is controlled through LabVIEW. The exact position of the PIV 
cameras is determined using calibrated linear encoders, accurate to 5μm. It is important to note that the 
quartz models installed in the test section are aligned to the coordinate axis of the traversing system, 
generally to 0.01 in. 

A Big Sky, twin, double-pulsed 532 nm neodymium-doped yttrium aluminum garnet laser is mounted 
below the test section where the light sheet is oriented in the streamwise direction and projected up through 
the bottom. Depending on the setup, one or two cameras focus on the model through lenses, typically 
between 20 and 105 mm, at acute angles (less than 15 degrees) to the test section windows. Small angles are 
desired to minimize refraction at the test section air-to-window interface. Scheimpflug adapters are installed 
to give a sharp focus over the entire field of view (FOV). 

Being outside the test section, the cameras look through air, glass, mineral oil, and quartz in order to 
view the flow within the model. With the exception of quartz and mineral oil, these media do not have 
similar refractive indices. To take measurements across the width of the model, optical refraction is 
addressed by coordinating the movement of the cameras relative to that of the laser. A method similar to 
McIlroy et al. (2011) is used to compensate for theses refractive issues. The camera-to-laser movement ratio 
is approximately 0.65 but depends on the camera angles achieved during PIV calibration. 

The cameras are calibrated with precisely machined plates that consist of dots that fill the entire FOV; 
typically, a LaVision Type 7 or Type 20 calibration plate is used. As the cameras look through multiple 
media to see into the test section, a polynomial model is applied to map the FOV; after, self-calibration is 
performed for stereo measurements to correct any misalignment of the laser light sheet. The light sheet is 
typically adjusted to a thickness of 1 mm. Measurements are realized using DaVis v.8.08 software. 

During processing, an interrogation window (IW) is chosen based on the smallest feature size in the 
model to achieve at least 5–10 vectors resolution within. The flow is seeded such that at least 8–10 particle 
pairs are in each IW. The cameras collect data at a frame rate between 2 and 15Hz. The time delay between 
sequential frames is chosen based on the criteria set by Wilson et al. (particle displacements were limited to 
traveling between 25 and 62.5% of the IW) (Wilson 2009). When time averaging the measurements, the 
typical number of images is determined using a statistical method proposed by Uzol et al. 2001). 

State-of-the-art measurement techniques, such as PIV, are being used at the MIR facility in an effort to 
better understand fundamental flow phenomena in nuclear reactor cores and their components. PIV is a 
non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer 
particles within a fluid. The MIR uses a double-pulsed laser to illuminate the particles by projecting a thin 
laser light sheet into the flow domain, acting much like a camera flash. The particles are observed and 
imaged using a charged coupled device camera as they move with the flow field of the fluid. The images are 
interrogated to determine particle displacements, which are then used to calculate the velocity field. Figure 3 
illustrates a general PIV setup. 
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Figure 3. Particle Image Velocimetry. 

Multiple images are recorded at a single FOV to calculate instantaneous and time-averaged velocity and 
turbulence quantities. Each image is divided into multiple interrogation regions or IWs where statistical 
correlation algorithms are employed to calculate the average particle displacement (Adrian and Westerweel 
Year 2010). The corresponding displacement map is then used to calculate a velocity field. It is important to 
understand that the particles are not tracked; the cross-correlation simply returns the most likely 
displacement, represented by the highest peak of the field. 

At the heart of the PIV calculation is the cross-correlation algorithm, which is used to estimate the 
displacement of particles in each IW. The algorithm generates a correlation plane for each window that 
defines the magnitude and direction of the particle movement. A typical plane is illustrated in Figure 4. The 
particle displacement is indicated by the location of the largest peak relative to the center of the IW (Adrian 
and Westerweel Year 2010). 

 
Figure 4. Representative view of PIV correlation plane. 



 

 19

Over the past 20 years (Adrian 2005), many efforts have been directed towards the refinement of the 
basic digital algorithms developed by Willert and Gharib (1991). Some key developments that significantly 
impacted the applicability of PIV include discrete window offset (Westerweel and Gharib 1997; Wereley 
and Meinhart 2001), window deformation (Astarita 2007; Nobach and Tropea 2005; Scarano 2002), and 
iterative multigrid and super-resolution methods (Scarano and Riethmuller 1999; Scarano and 
Riethmuller 2000; Scarano 2003; Scarono 2004). Three-component planar velocity measurements are 
accomplished using a standard stereo-Digital Particle Image Velocimetry (DPIV) methodology (Wieneke 
2005). 

A wide variety of specialized approaches have been developed to address particular limitations of the 
method. For example, techniques such as the ensemble correlation (Meinhart, Wereley, and Santiago 2000) 
and the single pixel correlation (Westerweel, Geelhoed, and Lindken 2004), were developed for 
micro-DPIV applications and have been shown to offer greater accuracy when evaluating certain steady or 
periodic flows. Although a vast amount of research is dedicated to the development of advanced algorithms, 
improvements on the fundamental processing technique are still needed (Adrian 2005). In particular, for 
cases with strenuous experimental conditions where illumination may be limited or nonuniform, or in the 
vicinity of boundaries and under high-shear rates, the accuracy of the standard cross-correlation (SCC) is 
severely compromised, thus limiting its capability for evaluating more complex flow fields (Scarano 2002). 
In addition, the accuracy of particle position subpixel interpolation schemes has been the subject of several 
investigations (Marxen et al. 2000; Udrea et al. 1996). Gaussian fitting schemes, such as the three-point 
estimator and local least-squares estimator, have been seen to provide reduced error in position estimation of 
the geometric image compared to more traditional methods such as center of mass (Willert and Gharib 1991; 
Marxen et al. 2000; and Udrea et al. 1996). In addition, peak-locking was significantly reduced for the 
three-point fit when compared to a centroid approximation (Willert and Gharib 1991). The use of Gaussian 
fitting schemes for finding particle positions and correlation peaks has been very well documented. 
However, using the same schemes to find particle or correlation diameter has not been investigated 
comprehensively. Marxen et al. (2000) classified the measured particle diameter with the true diameter for a 
three-point Gaussian estimator and a least-squares estimator. Their results were significantly affected by 
preprocessing methods, and errors in excess of 50% were reported. However, since this issue was not the 
primary focus of their study, sizing of the particle images did not receive further attention. Recent work 
proposed improved Gaussian fitting schemes that deliver better accuracy in both positions and diameter 
estimation (Brady, Raben, and Vlachos 2009). 

The velocity measurement dynamic range for PIV has been one of the main challenges of the method 
(Adrian 2005). Standard PIV can achieve a dynamic range of about 200:1 between the highest resolvable 
velocities and the slowest (where the noise swamps the measurement) (Adrian 1997). To overcome this 
difficulty, several researchers have investigated combining cross-correlations between more than one pair of 
images into a single velocity field, thereby enhancing the accuracy of the lower velocity regions of each 
field (Hain and Kähler 2007; Pereira et al. 2004; Persoons O’Donovan, and Murray 2008; and Stanislas et 
al. 2008). 

Several studies have explored the potential of advanced windowing techniques. Amongst them, the most 
common is the use of zero padding, which removes the periodic effect of the Fourier-based cross-correlation 
(Raffel Willert and Kompenhans 1998). However, the use of zero padding has been met with mixed results, 
primarily because of errors introduced by the window discontinuity. Fore and Tung (2005) demonstrated 
that the effect of this discontinuity can be substantially attenuated through proper background scaling and 
noise removal. Alternative windowing techniques, such as the Gaussian window mask, are able to attenuate 
some of these Fourier-based effects without introducing a discontinuity. Gui and Merzkerch (2000) applied 
a Gaussian window mask to the image regions in order to reduce bias errors introduced by the loss of 
correlation. Nogueira, Lecuona, and Rodriguez (1999) demonstrated how the Gaussian mask can be used to 
alter the low pass filtering effect of the DPIV estimation. Scarano (2003) extended this idea through the use 
of elliptical Gaussian masks aligned to minimize the curvature of the flow. 
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Accurate PIV measurements are achieved when careful consideration is given to the methods and 
parameters used to capture and process the PIV images. Important factors include the frame delay (time 
delay between sequential images), sample size (number of vectors), particle density/seeding (number of 
seeding particles within each interrogation region), and image processing methods. 

A literature review was conducted to determine the major parameters that contribute to PIV uncertainty. 
This is by no means a comprehensive list, but it represents a compilation of some of the variants that have 
been studied by past researchers. Adrian and Westerweel (2010) present an outstanding review of 
particle-imaging techniques and define many important parameters used during data acquisition. These 
parameters include magnification, particle image diameter, depth of field, and source density. Keane and 
Adrian (Year 1992) studied performance of auto-correlation methods and cross-correlation methods of 
interrogation of single-exposure and double-exposure double-pulse PIV systems. They identified a number 
of non-dimensional experimental parameters that affect these measures of performance. The authors used an 
extended range of velocity fields in their analysis and a Monte Carlo simulation of the cross-correlation 
method to reveal the critical dimensionless parameters of the mean cross-correlation function and its 
fluctuations that effect performance. These parameters are shown in Table 1. 

Table 1. Non-dimensional experimental parameters that affect performance. 
Symbol Description 

x Location in the fluid 
u{x} Local stream wise velocity 
w Local span wise velocity 
M Lens magnification 
C Mean concentration of seeding particles 
dI Size of IWs 

dt Particle image diameter 

NI Particle image density or mean number of particles in the interrogation spot 

Dzo Laser sheet thickness 

Dt Time interval between successive images. 
NI Particle image density 

D0 Signal-to-noise ratio in the resulting correlation function 
 

The International Towing Tank Conference (2008) published recommended procedures and guidelines 
for uncertainty analysis of PIV. These procedures and guidelines describe a reasonable approach to 
estimating uncertainty in PIV measurements by separating the analysis into four categories: calibration, flow 
visualization (seeding, laser pulsing), image detection (laser synchronization, image quality, contrast ratio), 
and data processing. The conference identified error sources from calibration procedures and techniques, 
image distortion, positional accuracy, laser power fluctuations, correlation peak identification, 
mis-matching, sub-pixel accuracy, pulse timing accuracy, position accuracy, and magnification. This 
conference found that the largest uncertainty was in comparison of calculated vectors with surrounding 
vectors (mis-match). The next two largest sources of uncertainty were sub-pixel analysis and calibration 
uncertainty. A brief summary of the described uncertainty and error sources are shown in Table 2. 
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Table 2. Uncertainty and error sources (International Towing Tank Conference 2008). 
Category Uncertainty and Error Sources 

Calibration Image distance of calibration plate dots 
Physical distance of calibration plate dots 
Image distortion caused by lens 
Misalignment and/or distance between 
laser sheet and calibration plate 
Lens aberration and magnification 
Camera chip distortion 

Displacement of 
Particle Image 

Laser power fluctuation 
Camera viewing angle 
Mis-matching of paired particle images 
Sub-pixel particle image movement 

Time Interval Camera and Laser pulse timing 
Experiment Particle lag 

Out-of-plane velocity component 
Measurement 
Position 

Origin correlation 
Particle distribution (uniformity) 

 
At a recent PIV Uncertainty Workshop (2007) organized by INL, the participants agreed that a basic 

uncertainty analysis should always include an assessment of particle lag, calibration error, grid convergence, 
velocity gradient random error, and convergence of mean and fluctuating quantities. They noted that 
uncertainty sources can be categorized according to the particles, their images, or the velocimetry 
computations. 

Guezennec and Kiritsis (1990) investigated the influence of image contrast, image noise, particle 
density, particle-size distribution, and particle displacement on the accuracy of PIV velocity measurements. 
The authors studied images that were generated according to a specific set of parameters that included the 
number of particles in an image, the mean intensity level of the particle and background pixels, the mean 
radius of the particles, and the standard deviation of the particle radius and the image noise. The authors 
claimed that choosing the “best” threshold value for every image is probably the most important task in 
obtaining velocity measurements with PIV. Huang, Dabri, and Gharib (1997) conducted a study to quantify 
and reduce errors in 2-D PIV. The authors suggest that rms-error is a function of the size of the IW, number 
of particles, local velocity gradient inside the IW, non-matching particles, and noise. 

Uzol and Camci (2001) examined the effect of sample size, turbulence intensity, and the velocity field 
on the experimental accuracy of ensemble-averaged PIV measurements. The authors found that increasing 
sample size resulted in significant reduction in the data scatter. Ullum et al. (1998) assessed PIV 
measurement accuracy and established the need for large sample sizes, particularly for higher order 
statistics. 

Additionally, McEligot et al. (2007) quantified the measurement uncertainty of PIV for velocity, 
positioning, fluid property, geometry, flow rate, and Reynolds number parameters for the lower plenum 
experiment. 

The tracer particles in an ideal experiment need to have the same motion as the fluid. For a single 
particle, smaller than the fluid scale of motion, the force balance from Newton’s second law could be 
written as: 
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Seeding particles used for PIV technique have the following important properties (PIV Workshop 
2007): 

 They do not affect flow properties 

 They are randomly distributed across all elements of fluid 

 They follow the flow without changing properties 

 The larger the particle, the more light it scatters (better images) 

 Smaller particles directly correlate to improved tracking of the particles 

 They do not interact with each other. 

The main objective of the PIV is to determine fluid velocity, which is inferred from the motion of tracer 
particles. The velocity is measured indirectly as a displacement  of the tracer particles in the 
finite time interval explained by Westerweel (1997) as: 

 . (1) 

For ideal tracer particles, the tracer velocity  is equal to the local fluid velocity . The 
displacement field obtained from Equation (1) only provides information about the average velocity along 
the trajectory over a time  (i.e., D cannot lead to an exact value of ) but approximates it within a finite 
error  (Westerweel 1997): 

 (2) 

The error is negligible if the spatial and temporal scales of the flow are large with respect to spatial 
resolution and exposure time delay. The displacement field should always be sampled at a density that 
matches the smallest length scale of the spatial variations in D. 

The seeding/tracer particles constitute a random pattern that is tied to the fluid and the fluid motion, 
which is visible through changes of the tracer pattern. The tracer pattern in X at time t could be defined as: 
(Westerweel 1997): 

 (3) 

where N is the total number of particles in the flow,  is the Dirac delta function, and the  is the 
position vector of the particle with index i at time t. Integrating  over a volume yields the number of 
particles in that volume. 

Adrian (1991) presents an outstanding review of particle-imaging techniques and defines many of the 
key parameters used in PIV analysis. These parameters include: 

 Magnification:  where di is the distance from the lens to the image plane, do is the 
distance from the lens to the object plane, and z is the distance away from the object plane. 

 Point response function: where M is the magnification,  is the f-number of 
the lens, and  is the laser wavelength. 

 The particle image diameter: , where dP is the particle diameter. 

 Source Density: where C is the number density of the seeding,  is the intensity 
of the light sheet thickness, M2 is the image of magnification, and  is the particle image diameter. 
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Choosing the best threshold value for every image is probably the most important task in obtaining 
velocity measurements with PIV, as explained by Guezennec and Kiritsis Guezennec and Kiritsis (1990). 
Thresholding is the process of separating particles from the background noise—getting rid of the outliers. 
Guezennec and Kiritsis (1990) also found that, for images with good contrast (C 100), the effect on 
velocity measurement error is insensitive to the noise level of the images. Additionally, the authors show 
that the average particle position error and the standard deviation of the error increase as the number of 
particles or the average size of the particles increase. However, they state that by obtaining a sharply 
focused light sheet, an accuracy of 0.1 to 0.2 pixels is possible. 

Westerweel (1997) showed that the measurement resolution is not determined by the pixel size, but by 
the particle-image diameter relative to the size of the interrogation region, and further improvements could 
be obtained by optimizing the subpixel interpolation with respect to the shape of the discrete displacement 
correlation peak. 

2.1.1 Uncertainties in Velocity Measurement 
As explained previously, the basic measurement of a PIV system is an instantaneous velocity 

component deduced from the translation of a group of particles over a time interval : 

 (4) 

where S is the scaling factor, is the displacement in pixels, and t is the time between images. The 
basic percent uncertainty in the velocity can be represented as: 

 (5) 

The propagation of such uncertainties into the mean statistics reported depends on the extent to which 
the uncertainties are random (precision) or systematic (bias) and the manner in which the results are 
presented. In some situations, fixed uncertainties can be removed from the presentation by normalizing the 
quantities involved. The averaging process for determining mean statistics will reduce the resulting percent 
uncertainties when they are random. 

Huang et al. (1997) conducted a study to quantify and reduce, when possible, errors in 2-D PIV. The 
authors claim that with 20 particles in an interrogation area of 32 × 32 pixels, bias and rms errors vary from 
about 0.025 to 0.1 pixels for displacements ( x) of 1 to 10 pixels. With an interrogation area of 16 ×16 
pixels and 200 particles, these uncertainties fall in a range of about 0.1 to 0.2 pixels up to a displacement 
( x) of 7 pixels, and then they explode. By employing an adaptive multipass technique, first with an 
interrogation area of 64 × 64 pixels and then one of 32 × 32 pixels, bias and rms errors are reduced to about 
0.03 pixels for up to 10 pixel displacements. The authors suggest that rms-error is a function of the 
following factors: 

 Size of IW 

 Number of particles (best >10) per interrogation area 

 Local velocity gradient inside IW 

 Nonmatching particles (Vz) and all sorts of noise. 

LaVision (2002) also suggests that rms-error (random uncertainty) is typically 0.05 to 0.1 pixels in real 
data. LaVision notes that a particle image diameter of less than 1 pixel can cause bias during vector 
calculation. They recommend particle sizes of at least 2 pixels. Slight defocusing and/or better algorithms, 
such as window deformation, can help with particle size. 
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The processing algorithm for the LaVision PIV system gives uncertainties in displacements of about 
0.05 pixels for synthetic images. Additional factors involved for images of real experiments include: 

 Calibration 

 Focus 

 Displacement of particles 

 Particle seeding 

 Spatial gradients within each interrogation spot 

 Image contrast 

 Operator settings. 

Therefore, the value of 0.02 pixels can probably be considered to be about the best possible pixel 
displacement under ideal circumstances. 

To convert the basic PIV observation to actual velocities, a scaling factor (S) is employed, relating the 
pixel dimensions to physical distance in the FOV with units of pixel/mm. This quantity can suffer from both 
systematic (or fixed) and random uncertainties. The physical distance can be provided from a calibration 
device, fabrication sketches with tolerances, as-built drawings, and/or independent measurements. The 
connection to the pixel grid is obtained via the camera view for the same location(s). Conceptually, using a 
calibration procedure with a calibration device can account for parallax in the camera views. Since several 
of these measurements are accomplished optically, they can be subject to refractive index variations, which 
can be either systematic or random, depending on the temporal and spatial scales involved. 

For stereo PIV (SPIV) with two cameras, a LaVision calibration plate of known distances, along with 
related software, is employed to relate the observed image dimensions in pixels to physical distances in the 
MIR oil tunnel. This determination can be used to calculate a scale factor in pixels/mm or vice versa. 

2.1.2 Error Sources and Propagation of Errors 
Error sources and propagation of errors in PIV measurements at MIR facility are listed as follows 

(PLN-3669, “Matched-Index-of-Refraction MHTGR Prismatic Block Bypass Flow Control and 
Measurement Plan”): 

 Temperature 

 Oil properties 

 Geometry 

 Scaling factor—calibration and uncertainty 

 Image distortion by lens 

 Image distortion by charged coupled device camera 

 Light sheet alignment to the calibration plate 

 Particle image displacement (acquisition and reduction) 

 Laser power fluctuation (spatial and temporal fluctuations) 

 Viewing angle 

 Particle motion. 
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The main technical benefit of this effort is to significantly improve data quality of the MIR facility, and 
the sensitivity study will improve the ability of the MIR/PIV technique to collect high-quality data with less 
effort by concentrating on important parameters. It will make the whole experimental process in the MIR 
facility much more efficient and productive. Figure 5 summarizes the source of uncertainty in the MIR 
facility. 

 
Figure 5. Identified uncertainty propagation structure and sources in MIR facility. 

2.1.3 Error versus Uncertainty 
There is a very significant difference between error and uncertainty. Error has a magnitude that is well 

defined, whereas uncertainty is an estimate (sometimes given in range [i.e., ±5%]). The error of a specific 
measurement source is a quantity with exact magnitude and specific signs expressing the difference of the 
measured from the true value. The uncertainty is the estimate of  of the range of the values around the 
measurement that contains the true, actual, but unknown, error(s) . 

2.2 Summary 
PIV is a nonintrusive, state-of-the-art, velocimetry measurement technique with a very high spatial 

resolution. This technique is being used to benchmark CFD codes to improve the safety of current and 
advanced nuclear energy systems. PIV does not have an accepted uncertainty quantification methodology, 
which is required for rigorous code verification and validation. PIV will also establish INL’s reputation and 
lead in verification and validation efforts. 

3. EFFECT OF OIL TEMPERATURE ON PIV MEASUREMENT ERROR 
IN THE MIR FACILITY 

The effect of oil temperature on PIV measurement error in the MIR facility was studied to estimate PIV 
measurement error in the MIR facility when the operating temperature deviated from the matching 
temperature. The mineral oil temperature in the MIR facility is very important because the refractive indices 
between the mineral oil and the quartz models are matched by adjusting temperatures. The difference of 
refractive indices generally becomes larger as the temperature is deviated from the matching temperature. 
The different indices of refraction distort optical images of cameras and finally cause measurement errors. 

MIROverall ExperimentalUncertainty

1. Uncertainty from
ParticleMotion

2. Uncertainty from Image
Distortion

3. Uncertainty fromPIV Data
Processing

• Particle Density
• Particle Size
• Viscosity of Fluid
• Velocity Field
•…

• Refractive Indices
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• Camera Angle
•Geometry
• Lens magnification of
motion in the image plane
relative to fluid motion

• Concentration of seeding
particles
• Sizeof interrogation spot
on image
• Particle image diameter
• Laser sheet thickness
• Time interval of successive
images
•Data reductionmethod &
algorithm
•…
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3.1 Uncertainty Propagation of MIR Facility 
Figure 6 shows the uncertainty propagation in the MIR facility. Since the velocity field in this facility is 

measured by the PIV technique, the uncertainty propagation is basically the same here as the general PIV 
methods. The PIV is an indirect measurement technique. To measure fluid velocities, the fluid is seeded by 
small particles, and the particle movements are detected instead of fluid movement itself. Since the particle 
movement might not follow the fluid movement exactly, depending on the particle/fluid properties and the 
flow conditions, it is obvious that there are uncertainties between the actual fluid velocity and the measured 
particle velocity. Generally, it is considered that the particle follows the fluid movements well in the absence 
of strong swirl flows or gravity force. Another important uncertainty is generated when the particle images 
are taken by optical cameras. This uncertainty is mainly caused by different refractive indices between 
fluids, windows, and models. Once the images are collected, the main uncertainties are caused by a data 
process that converts image data to particle velocities. This is a time-consuming job using various 
mathematical correlation methods. The uncertainties of this process have been previously investigated 
(McEligot et al. 2007). 

 
Figure 6. Uncertainty propagation of MIR facility. 

This study focused on the optical uncertainty, which was not well investigated earlier in the MIR 
facility. The objectives of this study were to: 

 Develop methods for quantifying optical uncertainty in the MIR facility 

 Learn the effect of mineral oil temperature on the velocity measurement errors 

 Learn the effect of various parameters on the velocity measurement errors 

 Understand the importance estimation of various parameters on the velocity measurement. 
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3.2 Estimation Method of Velocity Error by Mineral Oil Temperature 
Figure 6 illustrates the basic technique to estimate optical errors (from Particle to Image-1 and Image-2, 

shown in Figure 5) in the MIR facility. The basic idea was to map the real object (X) to the image plane (X1) 
for the reference conditions and settings. These conditions and settings represent the calibrating conditions. 
After that, change the temperature of the mineral oil in the facility and map the object (X) to the new image 
plane (X2) to obtain mapping curves (see top center of Figure 7). By differentiating the two mapping curves, 
the following correlations were obtained: 

 (from X to X1) (1) 

 (from X to X2) (2) 

By dividing dx1/dx by dx2/dx, the following correlation was obtained: 

 (3) 

This correlation represents the velocity ratios between actual measurement conditions and ideal (reference) 
conditions. It indicates how much actual velocity data are distorted from the calibrated data. 

Figure 8 shows the basic equation set up for mapping an object plane (X) to an image plane (X1). The 
object plane represents the target that needs to be measured. The image plane represents the image mapped 
through the camera. This figure only shows the mapping in x-direction, but the same correlations can be 
applied to the other directions. Region 1 is air, Region 2 is a glass window, and Region 3 is mineral oil. In 
the real analyses, a quartz layer was inserted into Region 3 by separating the whole area into the following 
five regions: 

 Region 1:  from camera to window (air) 

 Region 2:  window (glass) 

 Region 3:  from window to model (oil) 

 Region 4:  model (quartz) 

 Region 5:  from model to measurement location (oil). 
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Figure 7. Basic idea of estimating velocity error from deviated indices of refractions. 

 
Figure 8. Equation setup for mapping object to image plane. 
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3.3 Analyses Method (Global Sensitivity Analyses) 
This section summarizes the uncertainty and sensitivity analysis (SA) of the PIV measurement error 

caused by oil temperature. This study used a random sampling Monte Carlo-based method called Global 
SA, which is briefly summarized below. 

According to the definition by Satelli et al. (2004), SA is the study of how the variation in the output of 
a model contributes to different source of variations and of how the given model depends on the information 
fed into it. Originally, SA was created to deal simply with uncertainties in the input variables and model 
parameters. Over the course of time, the idea has been extended to incorporate model conceptual uncertainty 
(uncertainty in model structures, assumptions, and specifications). As a whole, SA is used to increase the 
confidence in the model and its predictions by providing an understanding of how the model response 
variables respond to changes in the inputs. Therefore, SA is closely related to uncertainty analysis, which 
aims to quantify the overall uncertainty associated with the response as a result of uncertainties in the model 
input. 

SA can be categorized with the following different types of analyses: 

 Screening 

 Local sensitivity study 

 Global sensitivity study. 

The screening method, which has a huge number of input factors, is useful when the model is expensive 
to compute. The screening method is aimed at identifying a subset of input factors that is most likely to have 
a strong effect on the model output. Therefore, this method is approximate with low computational effort. 

The local sensitivity study focuses on the local (point) impact of the factors on the model. This analysis 
is usually carried out by computing partial derivatives of the output functions with respect to the input 
factors. The local sensitivity study approach is practicable when the variation around the midpoint of the 
input factors is small and the trend is linear. When significant uncertainty exists in the input factors, the 
linear sensitivities alone are not likely to provide a reliable estimator of the output uncertainty in the model. 

The global sensitivity study focuses on apportioning the input uncertainty to the uncertainty in the input 
factors. Typically, global SAs are based on the sampling-based method to quantify the influence of 
uncertain input parameters on the response variability of a numerical model. There are several different 
methods that can be used for a global SA: standard regression coefficient, Pearson product moment 
coefficient, Spearman coefficient, measure of importance (Sobol, Fast, etc.), and others. The global SA is 
generally based on the variance-based method. The following section gives the details. 

3.3.1 Variance-Based Methods 
This study used variance-based methods for SAs based on the variance decomposition. When the input 

variables are mutually orthogonal, independent, or noncorrelated, it is possible to decompose the variance of 
f(X) into terms of increasing dimensionality (Sobol 1990 and 1993) using: 

 (4) 

The terms Vi, Vij, Vijk, …, are called partial variance. These terms can be computed, for instance, as: 

 (5) 

 (6) 

 (7) 

The decomposition in Eq. (4) has the useful property that all the terms in Eq. (4) sum to 1 using: 

 (8) 
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hence: 

: the first order sensitivity indices 

: the second order sensitivity indices 

: the third order sensitivity indices. 

The sensitivity indices have a natural interpretation since they represent the fraction of the total variance 
of f(X), which results from any individual factor or combination of factors. One limitation of Sobol’s 
sensitivity indices is their high computational cost. 

The first order sensitivity index (Si), which is called “main effect,” represents the expected amount of 
variance removed from the total output variance, in case that the uncertainty of Xi is known. This measure 
indicates the relative importance of an individual input variable Xi in driving the uncertainty and can be seen 
as indicating where to direct effort to reduce that uncertainty. The first order indices are an essential 
parameter for the Factor Prioritization setting, which focuses on identifying the most important factor. 

The total effect for the input variable Xi is the sum of the first order index and all higher order effects in 
which the factor participates. The total index represents the expected amount of output variance that would 
remain if Xi is left free to vary over its uncertainty range after all other variables have been fixed. The total 
sensitivity index can be expressed by: 

 (9) 

where X-i represents all the input variables except Xi. 

The total sensitivity index is the essential parameter for the Factors Fixing setting, which focuses on 
identifying the factor or the subset of input factors that can be fixed at any given value over their ranges of 
uncertainty without significantly reducing the output variance. If such a factor or subset of factors is 
identified, the remaining ones, being varied within their own range, explain most of the unconditional 
variance. 

3.3.2 General Analysis Procedure for Global Sensitivity Analyses and SimLab 
This study used SimLab, a global SA software designed for Monte Carlo-based uncertainty and SA 

(SimLab 2008). SimLab is based on performing multiple evaluations with probabilistically selected input 
factors and then using the results of these evaluations to determine the uncertainty in model predictions and 
the input factors that gave rise to this uncertainty (Satelli et al. 2004). In general, Monte Carlo-based 
analyses use the following five steps (Satelli et al. 2004): 

1. Input Selection: A range and distribution are selected for each input variable (input factor). These 
selections will be used in the next step for the generation of a sample from the input factors. If the 
analysis is primarily of an extrapolatory nature, then a quite rough distribution assumption may be 
adequate. 

2. Input Generation: A sample of points is generated from the distribution of the inputs specified in the 
first step. The result of this step is a sequence of sample elements. 

3. Model Evaluation: The model is fed with the sample elements, and a set of model output is produced. In 
essence, these model evaluations create a mapping from the space of the input to the space of the results. 
This mapping is the basis for subsequence uncertainty and SA. 

4. Uncertainty Analysis: The results of model evaluations are used as the basis for uncertainty analysis. 
One way to characterize the uncertainty is with a mean value and a variance. Other model output 
statistics are provided. 

5. Sensitivity Analysis: The results of model evaluations are used as the basis for the SAs. 
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3.3.3 General Strengths and Weaknesses of Global Sensitivity Analyses 
It is quite useful to know the strengths and weaknesses of the Monte Carlo-based SA method before 

doing analyses. The typical strengths of Monte Carlo simulation are as follows: 

 It provides comprehensive insight into how specified uncertainty in inputs propagate through a model 

 It forces analysts to explicitly consider uncertainty and interdependencies among different inputs 

 It is capable of coping with any conceivable shape of probability distribution function and can account 
for correlations 

 It can be used in 2-D mode to separately assess variability and epistemological uncertainty. 

The general weaknesses of Monte Carlo simulation are as follows: 

 It is limited to those uncertainties that can be quantified and expressed as probabilities. 

 One may not have any reasonable basis on which to ascribe a parameterized probability distribution to 
parameters. 

 It may take a large run-time for computational intensive models. This can partly be remedied by using 
more efficient sampling techniques. 

 The interpretation of a probability distribution of the model output by decision makers is not always 
straightforward. There is no single rule arising out of such a distribution that can guide decision-makers 
concerning the acceptable balance between, for instance, expected return and the variance of that return. 

3.4 Uncertainty and Sensitivity Analyses 
This section summarizes the uncertainty and SA on the PIV measurement error caused by oil 

temperature. This study uses global SA based on the random sampling Monte-carlo method. Figure 9 shows 
the procedure used. 

 
Figure 9. Analysis procedure. 
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Seven input parameters considered important in image mapping were selected: 

 L1 (m): distance in air between focus and glass 

 L2 (m): distance between glass inside and outside 

 L3 (m): distance in oil between glass and model wall (quartz) 

 L4 (m): distance in quartz between model wall inside and outside 

 L5 (m): distance in oil between model wall to measuring location 

 T (C): mineral oil temperature 

 Theta0: initial camera view angle. 

The parameter uncertainties were also predetermined in this step; their values are shown in Figure 9. 
Based on the input parameters and uncertainties, input datasets were randomly generated using SimLab 2.2 
software. SimLab 2.2 is a well-known SA code developed by the European Commission (SimLab 2002). 
This code can deal with various modern sampling based uncertainty/SA methods. 

After the input datasets were generated, they were input into the MATLAB code developed for 
estimating velocity errors. The MATLAB code program was based on the method described in the previous 
sections. Appendix A shows the detailed MATLAB script. 

After the outputs were generated by the MATLAB code, the results were re-input into the SimLab 2.2 
software with input data. This process estimated average errors, standard deviations, and the importance of 
each parameter. 

This analysis mainly focused on the effect of mineral oil temperature uncertainty between calibration 
and actual measurement conditions. However, in the actual measurement, the camera locations, camera 
angle, measurement locations, and model locations can deviate from calibration conditions other than oil 
temperature. These effects are discussed later in this document with some SAs. 

Figure 10 shows a distribution of velocity errors for the input ranges given in Figure 9. In this analysis, 
temperature uncertainty was assumed to be ±0.01°C during the measurement. As shown Figure 10, the 
velocity measurement error by oil temperature is very small, within 5 × 10-5%. It was estimated that average 
velocity measurement error was about 2.28 × 10-5%.  

 
Figure 10. Estimated velocity measurement error from oil temperature. 
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A parametric study of the velocity measurement error with mineral oil temperature uncertainty was 
conducted. Oil temperature uncertainty was changed from ±0.01 to ±1.00°C, as shown in Figure 11, where 
the velocity measurement uncertainty increased with temperature uncertainty, having a linear trend. For the 
temperature uncertainty of ±1.00°C, the velocity measurement error was estimated to be about 0.0025%, 
indicating that the effect of oil temperature on the velocity measurement is negligible. 

 
Figure 11. Effect of temperature uncertainty on velocity measurement error. 

Based on the input uncertainties specified in Figure 11, this study conducted SA for velocity errors. All 
the input parameters were randomly generated in the input ranges and implemented into the MATLAB 
script for evaluations. The output results were processed in the SimLab software. Figure 12 shows the first 
order indices estimated by the Sobol method. The physical meaning of this sensitivity index is the 
contribution of output uncertainties by a certain parameter. The oil temperature in this study showed the 
largest sensitivity indices of 1.0, meaning that the oil temperature is the main uncertainty source of the 
velocity measurement error. Contributions of the other parameters were negligible compared to the oil 
temperature. 

 
Figure 12. First order sensitivity index (Main Effect). 
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3.5 Summary 
This study investigated optical uncertainties related to the PIV measurement in the MIR facility. The 

measurement error quantification method was developed based on the mapping process from target object to 
the image planes. Uncertainty and SAs proposed by Sobol et al. (1990) were used to estimate total velocity 
measurement uncertainties and the importance of related parameters. This method was based on the random 
sampling Monte-carlo technique. The effect of oil temperature was estimated to be around 2.28 × 10-5 % for 
±0.01°C and 0.0025% for ±1.00°C. According to SAs results, the contribution of the oil temperature on the 
velocity measurement error was estimated to be almost 100% of the total uncertainty. It was concluded that 
the effect of oil temperature is dominant. 
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4. EXPERIMENTS AT MIR FLOW FACILITY 
The Bypass Flow Experiment was performed in the MIR facility in which PIV measurements of a 

representative gas-cooled prismatic reactor core model were taken. These measurements were taken in order 
to understand the amount of flow that travels through the interstitial region between the fuel blocks and to 
produce benchmark data for CFD model validation. 

The Flat Plate experiment within the MIR facility was designed and analyzed to use PIV to measure the 
flow within the bypass transitional flow regime. These measurements were used to better understand the 
entropy generation rate within this region of flow. Secondly, it was proposed that the entropy generation rate 
could be used as a design parameter to predict the onset of turbulence. Both mentioned experiments are 
discussed in further detail in the following sections. 

4.1 Bypass Flow Measurements in a Representative Gas-Cooled 
Prismatic Reactor Core Model 

Bypass flow is a unique characteristic of the Gas Turbine-Modular Helium Reactor (GT-MHR) 
designed by General Atomics. For a prismatic-type core, it refers to the coolant that navigates through the 
interstitial passages between the fuel elements and reflector regions in lieu of traveling through the 
designated coolant channels. It is estimated that bypass flow will vary from 10–25% or more of the total 
core flow and may also vary over time because of fast neutron-induced graphite element shrinkage and core 
barrel swelling (INEEL 2005). These flows are of particular concern because they reduce the desired flow 
rates in the coolant channels and thereby may have significant influence on the maximum fuel element 
temperature, cooling channel exit temperature, and the temperature distribution in the lower plenum; all of 
which affect the efficiency of the reactor. Bypass flow is considered the most important contributor to 
uncertainty in fuel temperatures (INL 2010). 

4.1.1 Prismatic Fuel Block Design 
General Atomics designed the GT-MHR with a prismatic-type core that uses helium as its coolant 

(General Atomics 1996). This type of core consists of a large group of tightly stacked hexagonal graphite 
prismatic fuel elements. The blocks are arranged in the reactor vessel with inner and outer graphite reflector 
regions that surround an annular core of fuel blocks, as shown in Figure 13. 

 
Figure 13. Schematic of the GT-MHR. 
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During operation, cold helium flows from the outer annulus of the hot duct, up the walls of the 
pressure vessel, and into the upper plenum. The coolant then travels downward through a series of stacked 
graphite fuel blocks that contain an array of coolant channels. The mass flow rate for the helium is expected 
to reach 320 kg/s at full power. During normal operation, the coolant channel outlet Reynolds number 
varies from approximately 57,000 at high power to 2,300 at 10% core power. Table 3 contains select 
specifications for the GT-MHR. 

Table 3. Selected GT-MHR design parameters (General Atomics 1996). 
Specification Value 

Core Power (MW) 600 
Helium Mass Flow Rate (kg/s) 320 
Active Core Pressure Drop (MPa) 0.051 
 

4.1.2 Fuel Element Geometry 
Active core fuel elements are manufactured from graphite in the form of right hexagonal prisms. Each 

element measures 793-mm high by 360-mm across, as shown in Figure 14. An array of fuel holes and 
coolant channels, with diameters of 12.7 and 15.88 mm, respectively, run parallel through the length of 
each prism in a regular triangular pattern. At the center of each block is a fuel handling hole surrounded by 
six small coolant channels with diameters of 12.7 mm. 

 
Figure 14. Standard fuel element. 

The blocks are primarily aligned using a dowel-socket connection with its upper and lower neighbors, 
which are designed to fit together closely. The top and bottom edges of each element are beveled, with 
dimensions of 17.145 and 8.304 mm. The bevel is used to assist insertion of the elements into the core. 
Table 4 lists pertinent fuel element parameters for the present study. 

The gaps between fuel elements have a maximum width of approximately 3.9 mm upon installation. 
Though the fuel elements are designed to pack the core tightly, it is known that they will change size over 
their lifetime (Melese and Katz 1984). 
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Table 4. Pertinent fuel element parameters (General Atomics 1996). 
Parameter Value 

Distance Across Flats (m) 0.36 
Element Height (m) 0.7930 
Coolant Holes per Element, Small/Large 6/102 
Coolant Hole Diameter, Small/Large (mm) 12.7/15.88 
Fuel Holes per Element 210 
Fuel Hole Diameter (mm) 12.7 
Control Rod Hole Diameter (mm) 101.6 
Triangular Pitch Between Coolant Holes (mm) 18.796 
Beveled Edge Height/Width (mm) 17.145/8.304 

 
Graphite expands as temperature increases and is expected to shrink slightly because of irradiation. 

Melese et al. (1984) estimates a decrease of 5.1 mm in height and 3.5 mm across the flats over a 4-year 
lifespan. Since neither temperature nor irradiation is uniform, these effects will modify the shape of the 
elements and unevenly influence the gap size between adjacent blocks. The spacing between each block 
will vary, depending on such graphite shrinkage, manufacturing tolerances, and inexact installation. These 
gaps between the fuel elements allow for the helium coolant to travel in two general flow paths: axially 
(parallel to the coolant channels) and radially (in between the stacked fuel blocks). 

4.1.3 Bypass Flow Literature Review 
Several studies conducted in the 1980s presented 1-D nodal and analytical methods to investigate 

bypass flow (Kaburaki and Takizuka 1987); however, these methods were quite simplistic. In recent years, 
studies have focused on CFD calculations performed by researchers from INL, Japan Atomic Energy 
Research Institute, and Korea Atomic Energy Research Institute. Since only limited experimental studies 
focus on bypass flow, accurate fluid dynamic experiments must be performed to validate CFD-based 
research and predictions. 

Sato, Johnson, and Schultz (2010) performed 3-D CFD calculations of a typical 600 MW very high 
temperature reactor core. Their model represented a one-twelfth sector of a hexagonal fuel block, which was 
selected to achieve the smallest possible symmetric slice. The simulation considered an inlet temperature of 
490°C, a mass flow rate of 0.2 kg/s, and a heat generation rate of 27.88 MW/m3 with uniform gaps. The 
region between the fuel blocks was varied for each simulation using 0, 3, and 5-mm spacings. This variation 
in gap width caused the channel Reynolds number to range between 20,000 and 35,000 for the largest and 
smallest gap, respectively. The results indicated that the gap to coolant channel flow fraction increased from 
4.15 to 9.78%, considering a gap width increase from 3 to 5 mm. As the gap size increased, the maximum 
fuel temperature increased by 62°C, the temperature difference variation between coolant channels 
increased by 101°C, and the maximum channel outlet temperature decreased by 55°C. These changes 
established a large lateral thermal gradient across the sector and increased the possibility of hot streaking in 
the lower plenum. 

Yoon et al. (2007) studied the bypass flow of a prismatic modular reactor design using both 
experimental and computational methods. Their model introduced the concept of a unit-cell, which included 
three sectors, each made from a one-sixth part of a prismatic fuel block, separated by a uniform gap. The 
coolant channels for each sector were represented by a single 0.12-m tube, equivalent to the total flow area. 
The total unit-cell area made up one-half of a prismatic fuel block. The gaps were varied by 3 and 5 mm. 
Using air at 25°C, the inlet flow rate was varied to achieve approximately 0.18, 0.37, and 0.56 kg/second, 
with estimated channel Reynolds numbers ranging from 32,000 to 99,000. Using these inlet conditions, it 
was learned that the bypass ratio varied from 2.48 to 5.70% for the 3-mm gap and 7.52 to 11.97% for the 
5-mm gap. Fluid dynamic computations were performed for the 5-mm case using the shear stress transport   
turbulence model with 2.9 million elements; however, differences as high as 27% were calculated from the 
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experimental results. Other model combinations for bypass flow around a reflector block were studied, but 
those cases are not considered here. 

Pretest CFD calculations for the present bypass flow experiment were carried out at INL by Johnson 
(2011). The geometry was nearly identical to the present study, with the exception that symmetry was 
applied and a one-sixth sector was selected; the model was composed of 1.5 coolant channels and half a gap 
width. The coolant path consisted of an upper plenum, a full-length fuel element, and then a partial-length 
fuel element. This geometry allowed for both axial and radial gaps. The axial gaps varied in size by 2, 6, and 
10 mm and the radial gaps varied by 2 and 10 mm. Mineral oil was selected as the working fluid at 25°C, 
and volumetric flow rates of 205.3 and 57.2 L/min were used. The k-  turbulence model was employed with 
near wall treatment, and the solution was iterated to residuals <1 × 10-4. 

Table 5 summarizes the results, which show that: 

 The bypass flow fraction in the upper block was higher than the lower block for all cases 

 Flow in the gap increased with increasing gap size 

 The bypass flow fraction in the 6-mm axial gap was similar for both the low- and high-flow rate cases, 
even though one was laminar and one was turbulent 

 Flow in the channels was turbulent in all cases 

 Flow in the gap was laminar in all cases, except the high-flow rate 10-mm axial gap scenario. 

Table 5. Summary of CFD calculations for one-sixth sector of the bypass model (Johnson 2011). 
Axial Gap (mm)  2   6  10 
Radial Gap (mm) 2  10 2 10 2 2 
Flow Rate (L/min) 205.3  205.3 205.3 205.3 578.2 578.2 
ReChannel 6,387  6,387 5,440 5,400 15,024 12,362 
ReGap 31  32 524 543 1,668 3,192 
Pressure Drop (kPa) 13.5  13.7 10.4 10.6 64.7 45.3 
Bypass Flow Upper Block (%) 0.97  0.97 15.6 16.2 17.3 31.9 
Bypass Flow Lower Block (%) 0.61  0.65 13.4 12.4 14.9 29.9 

 

4.1.4 Bypass Flow Experiment 
An experimental study at INL investigated the behavior of flow in the interstitial regions between fuel 

blocks of a very high temperature reactor design, particularly to quantify the flow through the gap in relation 
to the coolant channels. This study was carried out in the MIR facility where PIV was used to measure the 
flow field within a scaled model. A simplified model of the GT-MHR was considered, wherein a stacked 
junction of six adjacent fuel blocks were represented. Fuel block geometry was scaled by a factor of 2.016 to 
geometrically match the prismatic core configuration. Figure 15 illustrates the cross-section of the bypass 
model and the vertex of the three adjoining fuel blocks from which it was derived. As shown, a small gap 
existed between the blocks, depicting the interstitial gap region. The cross-section of the model consisted of 
three sectors of intersecting prismatic fuel blocks, which included nine coolant channels and three axial 
gaps. Each fuel block was carefully sectioned to only include the area that reasonably influenced the flow 
into the coolant channels and interstitial gaps. 
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Figure 15. Bypass model relationship to GT-MHR. 

The scaling factor was selected based on the commercially available diameter quartz tubes, which were 
used as the coolant channels for the model to permit Reynolds numbers comparable to the low-power range 
of an operational prismatic reactor. Careful selection of the scaling factor was also important because it was 
the key feature to provide adequate spatial resolution for SPIV measurements in the coolant channels and 
gaps. Based on this criterion, a tube diameter of 32 mm was chosen. 

The experimental apparatus included two near double-scale blocks: a full-length upper block and a 20% 
partial-length lower block. Each sector was manufactured from three parallel tubes that connected to a solid, 
machined cap on each end. The caps were chamfered to match those of a typical fuel block. Long plates 
extended between the caps to serve as walls for the interstitial gaps. All quartz components were 
manufactured to a 0.127-mm tolerance. The gaps between sectors were adjustable to widths of 
approximately 2, 6, and 10 mm using a spacer that runs along the length of the model. Epoxy adhesive and 
Room Temperature Vulcanizing silicone were used to bond and seal the model, but optical glue was used to 
seal the joints where optical or laser access was required. 

The model was constructed from fused quartz to permit optical access for PIV measurements. Quartz 
was used because its refractive index is similar to mineral oil—the working fluid in the MIR facility. By 
pairing these media at their index matching temperature of 25.156°C, the model became near invisible when 
submersed in the mineral oil, and optical refraction was eliminated between the wall of the test section and 
the inside of the model. This technique is advantageous to measure internal flow. 

Figure 16 depicts the components of the bypass flow model. Flow entered the model through the inlet 
annulus, where it was directed to the periphery of a hemisphere. The hemisphere contained an 
anti-separation spike that prohibited the flow from separating as it turned 180 degrees to travel through the 
upper plenum and representative fuel blocks. 



 

 40

 
Figure 16. Bypass model components. 

A pump analysis of the total dynamic head for the bypass flow model was performed to estimate the 
Reynolds numbers expected in the coolant channels and gaps given the MIR system; specifically, an 
auxiliary loop pump provided flow into the model, MIR plumbing, and bypass model geometry. Figure 17a 
illustrates the auxiliary loop pump curve and estimated head loss with varying flow rate. Figure 17b shows 
expected Reynolds numbers in the coolant channels and gaps for varying flow rates. It was determined 
that a maximum flow rate of 1,430 L/min could be achieved given a 3-mm gap width, leading to channel 
and gap Reynolds numbers of 7,282 and 360, respectively. This maximum assumes little or no leakage 
from the model. 

The gap width was used as the characteristic length to calculate the Reynolds number in the gap, 
allowing direct comparison to the CFD pre-calculations performed by Johnson. 

 
Figure 17a. Head loss calculations. 
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Figure 17b. Design head loss and Reynolds number estimates. 

Because the MIR is an isothermal facility, the effects of density gradients and the influence of 
temperature will not be studied. The present experiment will focus on the flow regimes that are dominated 
by momentum as opposed to density gradient. 

4.1.5 Test Plan 
SPIV was used to capture the flow field within the upper plenum, coolant channels, and gaps. The flow 

was seeded with 12-μm-diameter, silver-coated, hollow-glass spheres, which illuminated in 532-nm laser 
light. A neodymium-doped yttrium aluminum garnet double-pulsed laser projected a light sheet upward 
through the bottom of the model in the stream-wise direction, and two special charged coupled device 
cameras continuously imaged the seeding particle movement. Sequential images were broken down into 
IWs, and statistical algorithms were employed to determine particle movement, after which velocity vectors 
were calculated over the FOV. A sample size of 500 vector maps was used to ensemble averages for each 
flow field measurement. 

Measurements were taken in three stream-wise locations: the upper plenum, the midsection of the upper 
fuel blocks, and the midsection of the lower fuel blocks as shown in Figure 18. In these locations, the laser 
light sheet and cameras were translated across the width of the model, and velocity fields were measured at 
millimeter intervals—301, 245, and 245 slices were taken in the upper plenum, upper block, and lower 
block, respectively. As a note, the model’s origin was located at the centerline of the model and the inlet of 
the upper plenum. 

 
Figure 18. Light sheet locations. 

Table 6 contains the data collection matrix for the present experiment. Inlet conditions were varied to 
incorporate laminar, transitional, and turbulent flows in the coolant channels. For the contents of this paper, 
the axial and radial gaps were held constant using nominal values of 6 and 2 mm, respectively. 
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Table 6. Data collection matrix for the present experiment. 

ReCh 
Axial Gap 

(mm) 
Radial Gap 

(mm) 

Light Sheet Positions in 1 mm Intervals 
Upper Plenum 

(mm) 
Upper Block  

(mm) 
Lower Block 

(mm) 
1,700 6.05 2.02 -152 < z < +152 -122 < z < +122 -122 < z < +122 
3,000 6.05 2.02 -152 < z < +152 -122 < z < +122 -122 < z < +122 
4,800 6.05 2.02 -152 < z < +152 -122 < z < +122 -122 < z < +122 

 
During model assembly, spacers were used to achieve uniform axial gaps; however, after installation in 

the test section, the interstitial gap width was measured and found to vary between 5.47 and 7.75 mm. 
Figure 19 shows the actual widths of the interstitial gap for the cross-section of the bypass model measured 
at the inlet of the upper block. The assembled gap had a cross-sectional area that was approximately 
0.0028 m2. 

 
Figure 19. Actual gap spacing of the model cross-section. 

4.1.6 Experimental Methods 
The model was installed and aligned in the MIR test section within 0.076 mm of being level, plumb, 

and square to the traversing system—the apparatus used to position the cameras. A flow rate of 
0.15 m/second was used to maintain the temperature within ±0.005°C of the matching temperature. The 
flow rate into the model was adjusted to approximate the desired Reynolds numbers from the test matrix. 

Velocity measurements were realized using commercially available PIV software with twin, 
double-pulsed 532 nm neodymium-doped yttrium aluminum garnet lasers. Two 1.9 MPa cameras focused 
on the model through 50-mm lenses at acute angles (less than 15 degrees) to the test section windows. 
Small angles were desired to minimize refraction at the test section air-to-window interface. Scheimpflug 
adapters were installed to give a sharp focus over the entire FOV. 

The cameras were calibrated using a split level 309 × 309-mm plate that filled the entire FOV. The 
plate was manufactured with an array of 3-mm dots that were 15-mm apart and 3-mm between levels. A 
polynomial model was applied to map the FOV, then self-calibration was performed to correct any 
misalignment of the laser light sheet. The light sheet was adjusted to a thickness of 1 mm, allowing for 
complete coverage of the model within the limits of the test matrix. 
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An IW of 12 × 12 pixels was chosen for processing, and flow was seeded such that at least 8 to 10 
particle pairs were in each window. The cameras collected data at a frame rate of 15 Hz. The time delay 
between sequential frames was chosen based on the criteria set by Wilson and Smith (2011). Particle 
displacements were limited to traveling between 25 and 62.5% of the IW. 

Images were processed first with a 16 × 16 IW size and then with a 12 × 12 window size, using 50% 
overlap for both. The IW was selected such that the gap, the smallest feature size, had a minimum of 4 to 5 
vectors after processing. 

A General Public Utilities-based Personal Computer with 580 cores processed the data using the direct 
cross-correlation method. Because of storage and processing requirements, each span-wise velocity 
measurement was stored on a single 2- terabyte removable hard drive. The prescribed test matrix 
produced about 18 terabytes of data, taking over three months to process. 

4.1.7 PIV Sample Size Analysis 
An analysis similar to that of Uzol and Camci (2001) helped estimate the sample size N (number of 

vectors maps) that needed to be averaged to calculate stable vector and turbulence quantities, which were 
independent of time. The analysis was conducted using 4,000 instantaneous vector maps for a typical slice 
of the flow at a 600 L/min flow rate (ReCh  2800). 

At a specific location in the FOV, sets of N instantaneous vectors were randomly selected from the 
available 4,000, averaged, and plotted in relation to the total mean. This process was repeated 100 times for 
each N to statistically depict how the spread in the average decreased with increasing sample size. The N 
was varied between 5 and 4,000 samples. It was noted that in calculating the ensemble-average for the flow 
field, some regions of the FOV converged slower than others (required more images). Hence, the slow 
convergent regions dictated the number of images required to calculate an accurate ensemble-average. The 
above mentioned process was completed over an entire FOV (containing channel and gap flow) to 
determine the location of slowest convergence. Figure 20 illustrates the convergence at a typical point in the 
flow for mean velocity and turbulent variation with increasing sample size. It was determined that 
500 samples could adequately represent velocity and turbulence quantities given the space requirement and 
computational cost of the test matrix. 

 
Figure 20. Variation in (a) mean velocity and (b) mean turbulence stress versus sample size. 
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4.1.8 Flow Rate Analysis 
To quantify the flow of the gap in relation to the coolant channels, velocities from the cross-section of 

the model were needed. To this end, time averaged vector maps at each stream-wise location and flow rate 
were compiled into matrices, after which data slices were taken at three locations perpendicular to the flow 
at x = -113.1 mm, -1029.5 mm, -1928.5 mm as shown in Figure 21. For the purpose of this paper, the 
measurements taken in the upper plenum were used solely as a flow rate check. 

 
Figure 21. Data slice locations. 

A typical slice of the bypass data located in the upper and lower blocks is displayed in Figure 22. This 
plot denotes the velocity contours through the cross-section of the model. Note that the PIV cameras had 
limited optical access to the upper three coolant channels. As such, the PIV algorithms did not detect 
movement of particles and effectively calculated streaks of zero velocity in these locations. 

 
Figure 22. Typical velocity contour plot (Q = 351.15 L/min and x =-1029.5 mm). 

The commercial software MATLAB was used to compile the vector maps because of its ability to 
manipulate large matrices. A geometric mask was applied to the data to disregard vectors outside the flow 
area. The remaining zones were subdivided into small rectangular regions, sized by the light sheet spacing 
(dz) and IW height (dy); the area of which was defined by  =  · y. Figure 23 illustrates the typical 
flow area discretization within a coolant channel. Flow in the gaps and upper plenum were calculated in a 
similar fashion. 
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Figure 23. Typical flow area discretization of a coolant channel (Represented vectors are for illustrative 
purposes and do not accurately represent the flow along the axis of the tube). 

The flow rate was calculated by multiplying each vector by dA and summing over the masked flow 
field. The following equation described the method to calculate the flow rate (Q). 

To determine the accuracy of PIV for the purpose of calculating the bypass ratio, the results were 
compared to flow rate measurements taken near the inlet of the model using a calibrated turbine flow meter 
(TFM), accurate to within ±0.05% of the reading. 

Table 7. Flow distribution within the bypass model. 
 Flow Rate (L/Min) 
TFM Reading 

(L/Min) 
Stream- wise 

Location (mm) A B C D E F Gap 
351.1 

-1029.5 
34.8 34.4 34.7 34.0 35.7 35.5 28.8 

579.9 57.6 56.5 57.1 54.0 57.2 57.2 69.5 
1004.1 91.0 89.3 90.6 88.1 91.1 91.9 152.7 
351.15 

-1928.5 
35.4 34.6 34.7 35.5 36.6 37.4 24.1 

579.9 55.3 55.7 54.9 55.2 56.9 57.5 55.9 
1004.1 90.9 90.4 91.4 91.8 94.1 96.0 142.3 

 
Using the flow rates presented in Table 7, approximate channel Reynolds numbers of 1,750, 2,800, and 

4,500 were calculated. Development lengths were predicted for these flows from equations summarized by 
Munson, Young, and Okiishi (2004). It was estimated that fully developed flow would occur near 3.4, 3.0, 
and 0.6 m for the 351.1, 579.9, and 1004.1 L/min flow rate cases, respectfully. As the model length is 
1.91 m, it was understood that only the highest flow case would be fully developed within the coolant 
channels. Figure 24 shows the typical variation in time averaged velocity for a flow within a coolant 
channel. As expected, the lower Reynolds number cases show a developing velocity profile. 
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Figure 24. Typical variation of time-averaged velocity in a coolant channel located at [x, z] = [-1029.5, 
103]. 

Figure 25 illustrates the time averaged velocity through an axial gap located at [x, z] = [-1029.5, 0]. As 
shown, the flow located at the vertex (y = 0) had the highest velocity within the axial gap. Johnson (2011) 
also observed this flow characteristic in his preliminary calculations, noting that this region was of lower 
flow resistance. Just below the vertex, the velocity gradually increased toward the perimeter of the model. 
Recalling the gap was not uniform, and the width of the gap increased from 5.47 to 6.2 mm between the 
vertex and the perimeter of the model; it was understood that higher velocities occurred where the gap was 
largest. 

 
Figure 25. Variation of time-averaged velocity in a gap located at [x, z] = [-1029.5, 0]. 

Flow rate calculations were computed for each case in the test matrix. It was observed that calculated 
flow rate error varied between 6.2 and 10.5% when compared to the TFM reading. For the lowest and 
highest flow rates, the bypass flow ratio ranged from 7.3 to 16.94%. Because of lack of optical access in 
the upper three tubes of the model, it was assumed these velocity quantities were inaccurate. For this 
reason, the average velocity of all six lower coolant channels was superimposed on the upper channels 
to estimate a more realistic flow rate. Figure 26 illustrates the superposition principle using data from 
Figure 22. In this case, the average flow of channels A, B, C, D, E, and F was superimposed on the upper 
three channels G, H, and I. 
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Figure 26. Superimposed velocity contour plot (superimposed data on upper three tubes). 

Table 8 gives flow rate calculations, errors, and bypass flow ratios, considering the superimposed data. 
As expected, the calculated flow rate error decreased substantially. However, manipulating the data had 
little effect on the bypass flow ratio. 

Table 8. Bypass flow results for a scaled 3-mm gap width (superimposed data on upper three tubes). 

TFM 
Reading 
(L/Min) 

Stream-wise 
Location 

(mm) 

PIV 
Calculated 
Flow Rate 
(L/Min) 

Calculated 
Flow Rate 
Error (%) ReCh ReGap 

Bypass Flow 
(%) 

351.15  342.50 2.46 1,746 79 8.40 
579.9 -1029.5 579.01 0.015 2,836 186 12.00 

1004.1  965.55 3.84 4,522 413 15.82 
351.15  345.46 1.62 1,789 66 6.96 
579.9 -1928.5 558.94 3.61 2,778 150 9.99 

1004.1  974.14 2.98 4,618 382 14.61 
 

The bypass flow in the upper block was observed to be higher than that of the lower block for all flow 
rates within the test matrix. Accordingly, it was understood that the flow redistributes via the radial gap, 
entraining oil into the coolant channels and starving the gap in the lower block. 

In relating the present study to the CFD calculations, it was noted that the flow rates considered by 
Johnson (2011) were considerably higher than those achieved in the present study. For this reason, only 
the high flow experimental case was effectively compared (ReCh  4,500). A graph of the experimental and 
CFD bypass flow ratio results versus channel Reynolds numbers is shown in Figure 27. For the flow rate 
of 1231.8 L/min, CFD estimated the channel and gap Reynolds numbers as 5,440 and 524. As expected, the 
present study showed that the lower flow rate of 1004 L/min produced Reynolds numbers of 4512 and 412 
for the coolant channel and gap, respectively. However, in examining the bypass ratio for both cases, it 
appears that the CFD under predicts the amount of flow traveling through the gaps in both the upper and 
lower blocks. 
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Figure 27. Comparison of CFD and experimental data. 

4.1.9 Summary 
Velocity measurements were taken in the MIR facility to measure the anticipated bypass flow 

associated with a prismatic GT-MHR. A model that represented a stacked junction of six partial fuel blocks 
with nine coolant tubes and axial and radial gaps was manufactured and installed in the MIR. SPIV was 
then employed to measure the flow field within. Measurements were taken in three locations along the 
length of the model: in the upper plenum, in the midsection of the large fuel blocks, and in the midsection 
of the small fuel blocks. Flow rates were calculated for the coolant channels and gaps for comparison. The 
bypass ratio was estimated to range from 6.8 to 15.8% for the considered flow rates. When compared to 
pretest calculations, the CFD analysis appeared to under predict the flow through the gap. 

4.2 Bypass Transitional Flow Measurements of a Flat Plate 
Bypass transitional flow is a specific flow regime that falls between the laminar and turbulent flow 

regime of wall bounded flows that has “bypassed” the Tollmien-Schlichting waves by the means of 
freestream turbulent eddies. It should be noted that the use of the term “bypass” has changed definition in 
this section from the previous section. Where the previous section used the term bypass as a means of 
describing the flow within the interstitial gaps of the prismatic core blocks, the use of bypass in this section 
is referring to bypassing natural waves that form when wall-bounded flow is transitioning from laminar to 
turbulent. 

4.2.1 Flat Plate Design 
The design process was analyzed from many aspects of wall-bounded flow behavior. A restart of a flat 

plate experiment already performed at the MIR was beneficial to the current study as the parts and materials 
were reused. The need for ‘bypass’ transitional flow was the most important design parameter as this was 
the crux of the study. Bypass was achieved by both increasing the freestream turbulence intensity and 
incorporating an adverse pressure gradient (APG) on the normal component of the flow. The turbulence 
eddies in the freestream were introduced into the flow by the means of a turbulence grid upstream of the flat 
plate experiment, which consisted of 21 horizontal round bar stock that has a pitch of 1 inch, as seen in 
Figure 28. 
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Figure 28. Isometric view of adverse pressure gradient flat plate study with turbulence generator. 

The APG was utilized by first incorporating into the design a “bell-mouthed” shaped curve, located 
prior to the leading edge of the plate. To achieve symmetrical flow, the APG needed to be incorporated on 
both the top and bottom of the flat plate. This allowed for the fluid to be uniformly restricted as it flowed 
into the bell-mouth contraction, then to expand away from the plate just over and below the leading edge. 
The APG was designed with an angle of 3.5 degrees from the horizontal. 

The plate was positioned slightly above the horizontal centerline of the tunnel, as flow was slightly 
restricted by the support structures holding the plate in position. This compensated for cross-sectional area 
being too large on the top (data acquisition) side of the plate. Furthermore, a flap mechanism was installed at 
the furthest downstream location on the plate. It was found that the flap mechanism actually provided very 
little assistance in balancing the flow and was left in the down position. 

Another design specification was injecting seeding directly into the boundary layer at the leading edge. 
It was presented by Kahler et. al. (2006) that a local seeder could be placed just next to the leading edge 
without disturbing the flow. A 1/4-in. tube was used as a local seeder and placed directly next to the leading 
edge (as seen in Figure 29). This was in line with a low-flow gear pump that was set at a minimal flow rate 
as to not disrupt the bulk flow near the leading edge when the seeded fluid exited the nozzle. The gear pump 
drew fluid from a tank that was densely seeded (in comparison to the bulk of the fluid in the actual oil 
tunnel) and heated to matching temperature using the MIR system’s secondary heating loop. 
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Figure 29. Detail of the local seeding tube fastened near the leading edge of the flat plate. 

4.2.2 Benchmark Studies 
To calibrate the MIR system and flat plate study, two simplistic studies were performed in the oil tunnel 

to benchmark against readily available flat plate data: (1) a zero pressure gradient (ZPG) without the 
turbulence generator (TG) installed (as shown in Figure 30), and (2) ZPG with the TG installed. The ZPG 
case was achieved by assuming the tunnel walls were a “negligible” favorable pressure gradient. The former 
was found to be in direct comparison to the Blasius profile, holding that the case was in fact laminar down 
the length of the plate. The later benchmark of ZPG with a TG was mainly used as a connection between the 
laminar flow found in the ZPG without a TG and the fully installed APG with a TG. Both the ZPG cases 
(with and without a TG) were helpful in determining transitional behavior in the overall experiment. PIV 
data very near walls break down and overestimate the flow in this region, due mainly to the discrete size of 
the IWs always measuring some flow within. 
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Figure 30. Experimental data achieved in the center window of the MIR during the ZPG without a TG 
installed. 

4.2.3 Test Plan 
Planar PIV was used to capture the flow over the flat plate. Two FOVs were used: large scale FOV (at 

approximately 6 in.) and a mezzo FOV (at approximately 0.5 in.). The image plane was located at the 
centerline of the tunnel/plate with the normal axis in the tunnel/plate span wise direction. The camera was 
set up perpendicular to the image plane just above the flat plate, with the bottom of the image slightly 
viewing the top surface of the flat plate. As much data as could be acquired down the length of the plate 
within the three windows of the tunnel was recorded, with the camera traversing downstream from the 
leading edge of the plate. The tunnel’s main axial pump was ramped up to maximum capacity allowed by 
the MIR specification sheet. 

4,000 image pairs were recorded at each location in each FOV (both large and mezzo). This was 
determined from the Uzol study mentioned above as the measurements from the image sets appeared to 
converge around 4,000 image pairs. Also, to further improve the wall normal gradient measurements, the 
time between image pairs in the mezzo FOV was varied based on local flow conditions to utilize two 
different time stamps. One was curtailed as a “long” dt while the other was a “short” dt; in this sense, the 
longer dt could resolve the slower flow near the wall (even down to the zero velocity at the wall), and the 
short dt better resolved the fluid flow that bridges the large FOV data sets to the mezzo FOV data sets, as 
shown in Figure 31. In contrast, only every other location was recorded, as the wall normal gradient was 
found to be more crucial in accurate measurement than to have a streamwise continuous measurement. This 
allowed for saving space on the hard drives for the important measurements. 
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Figure 31. APG case having large FOV and mezzo FOV (by varying the dt between camera images). 

4.2.4 Flow Rate Analysis 
The quantity of data obtained from this study is staggering. Just beyond 10 terabytes of data were 

recorded at the MIR facility, and analyzing its entirety is currently underway. Some preliminary results have 
been found to show reasonable behavior of bypass transition within the confines of the oil tunnel. 

The freestream conditions of the ZPG with the TG (see Figure 32) show the initial freestream turbulence 
intensity as a percent of the fluctuations to the freestream streamwise velocity component to start out at ~9% 
near the leading edge of the plate and decrease exponentially to ~4.5%. Ideally, the freestream flow is 
uniform, but due to the tunneling effects of the MIR test section, there is a slight increase in freestream 
velocity. The Reynolds number, based on x position and boundary layer thickness, grows along the length of 
the plate. 

To further understand the flow phenomenon, and making sure to aquire transistional flow regime within 
the tunnel, experimental results were compared to a Direct Numerical Simulation (DNS) data set. Figure 33 
shows both the experimental ZPG and the DNS ZPG as skin friction coefficient (Cf) versus plate location. It 
is the main focus of this study to observe the minimum value of Cf, as it immediately follows the 
transitional region of the flow. Also, on this graph is a plot of the experimental APG and its DNS 
comparison, APG4 (where the 4 in this label represents the amount of lamda = 0.04, lamda being the 
dimensionless pressure gradient parameter  = / w*dp/dx). The third window of data in this set is still under 
investigation, but the minimum in Cf can be observed slightly downstream from that of the APG4 Cf 
minimum. This is consistent, as the experimental APG has a slightly lower pressure gradient than what was 
modeled in the DNS. 
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Figure 32. ZPG with TG installed preliminary results: (a) the freestream turbulence intensity versus plate 
location, (b) Reynolds number based on x versus plate location, (c) freestream streamwise velocity 
component versus plate location, and (d) boundary layer thickness versus plate location. 

 
Figure 33. Comparison of direct numerical simulation with experimental results from the MIR flat plate 
experiment. 

a) 

d) 
c) 
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4.2.5 Conclusions 
A flat plate was installed into the MIR oil tunnel to quantify entropy generation within the bypass 

transitional region of wall-bounded flow. The study is still under investigation, but preliminary results have 
shown that transitional flow has been achieved within the confines of the tunnel test section. This was 
accomplished mainly by the use of a TG and an APG (diverging plate) that feeds the boundary layer and 
brings the transition to turbulence closer to the leading edge. 
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5. DEVELOPING AN UNCERTAINTY QUANTIFICATION 
METHOD FOR THE MIR FACILITY 

The overall objective of developing an uncertainty quantification method for the MIR facility is to 
characterize the accuracy of flow data measured in the facility using PIV. The MIR is commonly used for 
CFD validation studies, which require rigorous uncertainty quantification. Until this work, such uncertainty 
quantification was not possible. These results are applicable to the MIR measurements as well as the 
broader PIV community. INL showed early leadership in the field of PIV uncertainty by funding the 
first PIV Uncertainty Workshop, which was organized by the principal investigators. The Laboratory 
Directed Research and Development work described here capitalizes on that start and places INL at the 
forefront of PIV uncertainty work. 

The uncertainty is affected by the numerous parameters present in the instrumentation chain, and in the 
vast majority of the cases, those uncertainties are interconnected and coupled; however, one of the most 
critical is the uncertainty associated with the PIV algorithm itself. This is arguably the most challenging and 
complex part of the process. Within the scope of this project, two-research teams (USU and VT) are 
collaborating with INL to deliver two complementary and integrated approaches that quantify PIV 
uncertainty and provide a ready-to-use software package that is able to serve INL needs. It is important to 
note that, to date, there is no accepted methodology for quantifying the uncertainty associated with 
individual vector evaluations. Both the methodologies developed are discussed here, and further details are 
provided in Appendix B. 

5.1 Uncertainty Surface Method 
The USU deliverable is a code used to estimate the uncertainty of a PIV measurement based on the 

Uncertainty Surface Method, which was developed under a previous INL Laboratory Directed Research and 
Development program. This method uses synthetic test data to determine a PIV code’s error response to 
various inputs. While, in principle, any number of inputs can be tested, thus far, four have been used: flow 
shear, particle displacement, particle image density, and particle image size. The results of these tests are 
stored in a multidimensional “Uncertainty Surface,” which the uncertainty code uses in conjunction with 
measurements of each of the inputs to determine the uncertainty for each measurement. 

The Uncertainty Surface Method determines the relationship between various error sources and 
estimates their contribution to PIV uncertainty. In their study, Timmins et al. (2012) considered particle 
image diameter, particle density, particle displacement, and velocity gradient as possible sources for PIV 
uncertainty. It is important to note that these sources were chosen arbitrarily. They were used to create an 
‘‘uncertainty surface’’ (or baseline) specific to a PIV algorithm and known flow field. These parameters 
were varied to create an array of synthetic images that mimic known flows and were then evaluated against 
the true flow to establish uncertainty. The code estimated the velocity uncertainty for each vector. This 
method can be adapted to any PIV system, provided that the relevant error sources can be identified for a 
given experiment and the appropriate parameters can be quantified from the images. 

The code was based on the following procedure, as described in detail in Appendix B and Timmins et 
al. (2012): 

1. Identify and select contributors to PIV error (particle image size, seeding density, shear rate, etc.) 

2. Generate synthetic images for rectilinear flow, varying each contributor identified in Step 1 

3. Compute vector fields for the synthetic images and compare them to known solutions to find the errors 
as a function of each of the parameters 

4. Compute the uncertainty estimates from the distribution of errors found in Step 3 and from the 
uncertainty surface 

5. Estimate the parameters found in Step 1 
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6. Combine the estimates from Step 5 with the uncertainty surface from Step 4 to determine the 
uncertainty for each vector 

7. Verify the methods’ effectiveness by generating new synthetic images for several flows and comparing 
the true solution of known flows to the calculated. 

The reliability of this methodology was validated using known flow fields, so the actual error could be 
determined. The analysis showed that, for most flows, the uncertainty distribution obtained using this 
method fit the confidence interval. 

Currently, this technique shows promise to quantify the uncertainty that stems from Fast Fourier 
Transform–based, cross-correlation PIV algorithms, but it is left to the discretion of the researcher to 
determine which parameters are most critical to include in the uncertainty analysis. The values of other 
uncertainties associated with PIV, which cannot be incorporated into this method, can be root-sum-squared 
with the uncertainty surface results to obtain a total combined uncertainty value. Also, it is important to note 
that this method makes no attempt to account for particle motion normal to the laser plane; however, 
ongoing work suggests this technique is capable of being applied to three-component PIV studies. 

At the start of this project, USU’s code, based on VT’s PRANA PIV code, could compute PIV vectors 
as well as the uncertainty of a PIV measurement because of particle displacement, particle image density, 
particle image diameter, and shear. The uncertainty code was integrated with the PIV code, and both the 
vectors and uncertainty were computed in one processing step. Since both the vector computation and the 
uncertainty estimate require access to the raw image data, this was deemed an efficient method. However, 
this code was inflexible in terms of the PIV code to be used, and no means existed to use the uncertainty 
method with commercial PIV software. 

Since INL uses commercial PIV software (called DaVis), the first USU task was to separate these two 
functions. Currently, the Uncertainty Surface Code stands alone and can use input from any PIV code for 
which a surface could be generated. 

The methods for estimation of particle image diameter and density used at the start of this project were 
found to not be robust when applied to real data. Methods for the estimation of particle image diameter were 
found in the literature and incorporated into the uncertainty surface code. Methods for estimation of particle 
image density were developed at USU during the last months, and further details can be obtained from 
Appendix B. 

5.2 Cross-correlation Peak Ratio Method 
The VT team has been pursuing an elegant method based on the hypothesis that the cross-correlation 

contains information about uncertainty. The results to date show that the ratio of the largest correlation peak 
to the second largest is an excellent predictor of uncertainty for the Robust Phase Correlation (RPC) 
displacement estimator implemented in PRANA. The peak ratio is also a good predictor of the uncertainty 
for the SCC displacement estimator, which is more commonly used. The details of this study are provided in 
Appendix B. 

The VT team pursued a method based on the peak ratios produced after applying the PIV 
cross-correlation algorithm to each IW. The peak ratio is defined as the ratio between the highest to second 
highest peak in each correlation plane. Using the RPC algorithm in PRANA (a PIV image processing 
software produced by VT), Charonko et al. (2013) showed that the peak ratio was an acceptable predictor of 
the algorithm’s uncertainty regardless of flow condition or image quality. They used an analytical model, 
derived from synthetic data sets to compute the uncertainty bounds at a 95% confidence interval for several 
artificial and experimental flow fields. They found that the resulting errors closely matched the predicted 
uncertainties. 

For comparison, the peak ratio method was also applied to the SCC algorithm, which is more commonly 
used in other PIV software. It was determined that the SCC peak ratio results produced a menial uncertainty 
estimate. 
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Using the peak ratio (Q), Charonko et al. (2013) modeled the uncertainty for an SCC-based 
measurement as: 

 (1) 

Similar relationships were also given for the RPC-based approach, and better curve-fits were obtained 
using: 

. (2) 

For a more in-depth review of the methodologies, the reader is referred to Appendix B of this report. 

5.3 Path Forward 
A PIV “wiki” has been built on the following site (www.piv-online.org) with input from the VT and 

USU team. Thus far, this wiki concentrates on best practices, although it is built to become much broader, as 
shown in Figure 32. Shortly, the team will invite several international PIV experts to contribute to the wiki. 
Once this process has had sufficient time, a broader announcement will be made. 

 
Figure 34. Screen shot from PIV-Online wiki. 

The remaining task for this year is the cross testing of the methods. This effort is currently ongoing and 
involves testing and comparing each method against known flows using real experimental data, including 
that obtained from the Bypass Flow Experiment. As this data is three-component, the INL’s interest in PIV 
uncertainty extends to SPIV measurements and is scheduled to be addressed in the upcoming year. It is 
important to note that SPIV works by computing a two-component velocity field from each camera and then 
using calibration images to map locations in one camera’s view to the other camera’s view. The uncertainty 
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of an SPIV measurement can thus be assessed by assessing the uncertainty of each of the two-component 
fields, decomposing these results into a single three-component uncertainty field, and then adding estimates 
of biases from the stereo calibration process. 

5.4 Summary 
The main objective of this study was to examine current uncertainty quantification methodologies for 

the MIR flow facility, which is needed for data quality assessment and for CFD code validation. Despite 
extensive research on the accuracy of various DPIV implementations, to date there is no accepted 
methodology for quantifying the uncertainty associated with individual vector evaluations. The current 
effort helps develop a framework for PIV uncertainty that focuses on the PIV algorithm, which arguably is 
one of the most challenging and complex parameters of the total uncertainty, and must be quantified with 
other important factors. Two methodologies were introduced to establish uncertainty for PIV measurements 
in the MIR facility; specifically, the Uncertainty Surface and Cross-correlation Peak Ratio Methods that are 
currently being developed by USU and VT. These uncertainty quantification methodologies can potentially 
lead to higher quality MIR data with accurate and reliable uncertainty quantification. They can be a 
tremendous asset to the ongoing efforts to validate advanced computational methods. 
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Appendix A 
MATLAB Script for MIR Mapping 

MIR_SA.m 
%% Mapping of Target to Image %% 
% developed by Eung Soo Kim (Idaho National Laboratory) 
  
clc 
clear 
  
%% Load Input Data 
  
load MIR_ST4; 
  
X = []; 
Y = []; 
Y2 = []; 
  
[ni_max, nj_max] = size(DATA); 
  
ni = 2; 
  
for ni = 1:ni_max 
 %% Input Parameters (Reference: Calibration): 
  
 % Distance: 
 L1 = 3.048; % distance of 1 (from camera to glass) 
 L2 = DATA(ni,2); % distance of 2 (glass thickness) 
 L3 = 1.016; % distance of 3 (from glass to quartz) 
  
 L4 = DATA(ni,4); % distance of 4 (quartz thickness) 
 L5 = 0.254; % distance of 5 (from quartz to test point) 
  
 L = [L1, L2, L3, L4, L5]; 
  
 % z: 
 z = 0.1; 
  
 % Theta0 (0 < Theta0 < 0.5 pi): 
 Theta0 = DATA(ni,7); 
  
 % Temperature: 
 Toil = 25.1561; % (C) 
  
 Tqrtz = 25.1561; % (C) 
  
 %% Evaluation Model 
  
 [Xip, Xtp, dXip, dXtp, dXip_dXtp] = f_TtoI(L, z, Toil, Tqrtz, Theta0); 
  
  
 %% Input Parameters (Actual Points): 
  
 % Distance: 
 L1 = DATA(ni,1); % distance of 1 (from camera to glass) 
 L2 = DATA(ni,2); % distance of 2 (glass thickness) 
 L3 = DATA(ni,3); % distance of 3 (from glass to quartz) 
  
 L4 = DATA(ni,4); % distance of 4 (quartz thickness) 
 L5 = DATA(ni,5); % distance of 5 (from quartz to test point) 
  
 L = [L1, L2, L3, L4, L5]; 
  
 % z: 
 z = 0.1; 
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 % Theta0 (0 < Theta0 < 0.5 pi): 
 Theta0 = DATA(ni,7); 
  
 % Temperature: 
 Toil = DATA(ni,6); % (C) 
  
 Tqrtz = DATA(ni,6); % (C) 
  
  
 %% Evaluation Model 
  
 [Xip_a, Xtp_a, dXip_a, dXtp_a, dXip_dXtp_a] = f_TtoI(L, z, Toil, Tqrtz, Theta0); 
  
 %% Evaluation of Error 
  
 Error = dXip_dXtp_a ./ dXip_dXtp; 
  
 %% Mean Error 
  
 ErrorMean = mean(Error); 
  
 %% Results Summary 
  
 X = Xip'; 
 Y = [Y,Error']; 
 Y2 = [Y2, ErrorMean]; 
end 
  
Y2 = Y2'; 
 
 
F_TtoI.m 
function [Xip, Xtp, dXip, dXtp, dXip_dXtp] = f_TtoI(L, z, Toil, Tqrtz, Theta0) 
%% Mapping of Target to Image %% 
% developed by Eung Soo Kim (Idaho National Laboratory) 
  
%% Input Parameters: L, theta, T, n 
  
% Distance: 
L1 = L(1); % distance of 1 
L2 = L(2); % distance of 2 
L3 = L(3); % distance of 3 
L4 = L(4); % distance of 4 
L5 = L(5); % distance of 5 
  
% n (index of refractions): 
n1 = 1.000293; % index of refraction for air 
n2 = 1.526; % index of refraction for glass 
n3 = 1.469445 - 3.587e-4 * Toil; % index of refraction for oil 
n4 = 1.46071 - 9.975e-6 * Tqrtz; % index of refraction for quartz  
n5 = 1.469445 - 3.587e-4 * Toil; % index of refraction for oil 
  
%% Initialization 
  
% Number of sections: 
N = 100; % It should be even nubmer. 
  
% Number of points: 
Np = N + 1;  
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% Maximum sight 
S = pi/10; 
  
% Image points initialization (Xip): 
Xip = zeros(1,Np); 
  
% Target points initialization (Xtp): 
Xtp = zeros(1,Np); 
  
% Alpha: 
Alpha = linspace(-S,S,Np); 
  
% Theta; 
Theta1 = Theta0 + Alpha; 
  
%% Input Checking 
  
% S and Theta check: 
  
if (((Theta0 - S) <= 0) || ((Theta0 + S) >= pi/2)) 
 disp('ERROR! S should be redefined!!'); 
end; 
  
%% Estimation of Light Locations 
  
% Xip (image locations): 
Xip = z * tan(Alpha); 
  
% x1: 
x1 = L1 .* tan(Theta1); 
y1 = L1 * ones(size(x1)); 
  
% x2: 
Theta2 = asin(n1/n2*sin(Theta1)); 
x2 = x1 + L2 .* tan(Theta2); 
y2 = y1 + L2; 
  
% x3: 
Theta3 = asin(n2/n3*sin(Theta2)); 
x3 = x2 + L3.* tan(Theta3); 
y3 = y2 + L3; 
  
% x4: 
Theta4 = asin(n3/n4*sin(Theta3)); 
x4 = x3 + L4.* tan(Theta4); 
y4 = y3 + L4; 
  
% x5: 
Theta5 = asin(n4/n5*sin(Theta4)); 
x5 = x4 + L5.* tan(Theta4); 
y5 = y4 + L5; 
  
% Xtp: 
N0 = N/2+1; % center cell number 
X0 = x3(N0); % center cell location 
Xtp = x3 - X0; 
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%% Plot 
  
% plot(Xtp, Xip) 
  
%% Differentiation 
  
dXip = diff(Xip); 
dXtp = diff(Xtp); 
  
dXip_dXtp = dXip ./ dXtp; 

 

  



 

 69

 

 

Appendix B 
 

Uncertainty Quantification Methodology 
For MIR Facility 

  



 

 70

  



 

 71

Appendix B 
Development of an Uncertainty Quantification Method 
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1. INTRODUCTION 
Particle Image Velocimetry (PIV) is a non-invasive, quantitative, flow visualization tool developed 

to measure fluid velocities over a wide range of length and time scales. The technique typically employs 
micron-size flow tracer particles, which are illuminated by a pulsed laser and imaged with a 
high-frequency camera. Processing algorithms are then used to determine the displacement of particle 
patterns within an image sequence and to estimate the velocity field (Willert and Gharib 1991). An 
overview of the development of DPIV over the first 20 years of the method is given by Adrian (Adrian 
2005). 

PIV was first developed in the 1980s, and the initial work of Meynart (R 1983) was followed by 
numerous seminal contributions that established the foundations of the method (Yao and Adrian 1984, 
Adrian and Yao 1985, Keane and Adrian 1990a, Adrian 1991). The introduction of digital image 
acquisition (Willert and Gharib 1991) (DPIV) provided a transformative evolution of the method and 
triggered its widespread use and an explosive growth of applications. Refinements over the next 20 years 
improved robustness and accuracy of the technique, including the development of stereoscopic 
(3-component) planar PIV (Soloff, Adrian et al. 1997, Willert 1997), iterative, and adaptive methods 
(Wereley and Meinhart 2001, Scarano 2002, Scarano 2003, Wereley and Gui 2003, Scarano 2004). A 
comprehensive history of these improvements can be traced through early reviews (Adrian 1991, Grant 
1997) and more recent sources (Stanislas, Kompenhans et al. 2000, Adrian 2005, Kompenhans, Raffel et 
al. 2007, Adrian and Westerweel 2010). Currently, the term PIV is used to encompass the extensive 
family of methods that are based on evaluating the particle patterns displacement using statistical 
cross- correlation of consecutive images with high number density of flow tracers (Adrian and 
Westerweel 2010). 

However, the development of PIV methods did not involve simultaneous rigorous quantification of 
measurement uncertainty. As a result, despite the numerous applications, theory, and contributions, there 
is currently no widely accepted framework for reliable quantification of PIV measurement uncertainty. 
The situation is exacerbated by the fact that PIV measurements involve instrument and algorithm chains 
with coupled uncertainty sources, rendering quantification of uncertainty far more complex than most 
measurement techniques. Consequently PIV results are often received with skepticism. Therefore 
developing a fundamental methodology for quantifying the uncertainty for PIV is an important and 
outstanding challenge. 

The first attempt to tackle this problem employed an “error-surface” methodology which would be 
constructed by mapping the effects of selected primary error sources such as shear, displacement, 
seeding density, and particle diameter to the true error for a given measurement (Timmins, Wilson et al. 
2012). This approach is roughly analogous to a more traditional instrument calibration procedure for 
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standard experimental instruments. The generated error surface provides the means to associate the 
corresponding distribution of errors to any combination of inputs of the error sources within their 
parameters space, as quantified directly from the actual experiment. Ultimately in order to 
comprehensively quantify the uncertainty, all possible combinations of displacements, shears, rotations, 
particle diameters, and any other parameter used must be exhaustively tested which can make this 
method computationally expensive. Moreover, many of the relevant parameters may not be easily 
obtained from a real experiment. 

Sciacchitano et al. proposed a method to quantify the uncertainty of PIV measurement based on 
image matching (Sciacchitano, Wieneke et al. 2013). The uncertainty of measured displacement is 
calculated from the ensemble of disparity vectors, which are due to incomplete match between particles, 
within the interrogation window. This method accounts for random and systematic errors, however 
peak-locking errors and truncation errors cannot be detected. Moreover to calculate the instantaneous 
local uncertainty, researchers need to do particle image pair detection and image matching for every 
single interrogation spot which makes this method also computationally expensive. 

2. UNCERTAINTY QUANTIFICATION METHODS FOR PIV 
When best practices are followed, much of the uncertainty in a PIV measurement can come from the 

computation of the individual displacements at each interrogation window. Two methods have been 
developed for determining this fundamental PIV uncertainty. The Uncertainty Surface Method (USM) is 
a response surface method developed at USU, while the Signal to Noise Ratio Method (SNR) was 
developed at Virginia Tech. These are now described. 

2.1 Uncertainty Surface Method 
The USM was first reported in Timmins 2010. Under the present work, the method has been 

refined, written into user-friendly Matlab codes, and documented. In order to employ the 
Uncertainty Surface Method, one must choose the several measureable parameters that one assumes 
impact the error in a PIV computation. In our work, based on work published earlier and discussed by 
Adrian and Westerweel 2010, we chose particle image diameter, particle image density, particle 
displacement, and shear. 

Since the uncertainty of a PIV calculation depends on the algorithm used (meaning the software and 
all settings), the response of the algorithm to varying degrees of each of the contributors must be 
systematically tested to generate an Uncertainty Surface for that algorithm. Synthetic images are used 
for this purpose. 

Once a surface has been generated, the uncertainty of each vector may be determined by 
measuring the particle image diameter, particle image density, particle displacement, and shear, and then 
querying the surface based on those results. Obviously, the method requires a sensible choice in 
parameters. If other parameters affect the uncertainty and are not included in the surface, a poor 
estimate of uncertainty can result. Some relevant parameters, such as out-of- plane motion, can be 
difficult to measure, making them difficult to include in the USM. 

Matlab-based software to generate synthetic images, generate the uncertainty surface, and compute 
uncertainty for 2C and 3C PIV data, are available on the USU EFDL website 
(http://efdl.neng.usu.edu/EFDL/Code.html). 
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2.1.1 Objective 
The aim of the USM is to produce an uncertainty band of the instantaneous u and v velocity at each 

measurement location that contains the true velocity value to 95% probability. Over an ensemble, 
these values can be used to form the uncertainty of the mean velocity and the Reynolds stresses, 
as discussed below. 

2.1.2 Detail Description of the Methodology 
For a specific PIV algorithm (meaning software and its settings), a series of tests are used to 

determine the uncertainty response of the algorithm to particle displacement, particle image diameter, 
particle image density, and shear. The tests consist of computing vector fields from a large series of 
synthetic images that are based on flows with varying displacement and shear. The images also represent a 
range of particle image density and particle image diameter. By comparing the resultant vector fields to 
the known displacement for each case, the distribution of error, or the uncertainty for a specific 
combination of the four parameters can be determined. The four-dimensional uncertainty response is 
termed the “uncertainty surface.” This process must be performed for each algorithm of interest, but the 
resultant uncertainty surface is used for all future calculations. 

 
Figure 1: Surface of Ur

+ for 2.50 pixel particle image diameter and 0.0195 particles/pixels2 density. 

Once a PIV dataset has been processed to find the velocity field, the values of the four error 
sources are determined from the raw image data and the velocity vectors. Then, the uncertainty surface is 
queried for the value of the uncertainty for each instantaneous vector. Each component of velocity is 
assigned three instantaneous uncertainties by the uncertainty surface: a systematic uncertainty bk, and an 
upper and lower random uncertainty (rlow and rhigh), as shown in Figure 2. 
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Figure 2: Probability distribution of error and definition of bias and random uncertainties. 

Of the four parameters chosen, particle image density is the most challenging to measure. An 
autocorrelation-based density (ABD) method for estimating the particle image density was developed as 
part of the present work (Warner and Smith 2013). An empirical relationship between the 
autocorrelation peak height and the particle image density, particle image diameter, average particle 
intensity, and interrogation region size was established using synthetic images. Simulated camera noise 
was added to synthetic images and was found to have insignificant impact. 

Experimental validation of the synthetic image results was performed using two distinct experimental 
setups. The setups consisted of a rectangular jet seeded with olive-oil droplets in air and a water-filled 
aquarium seeded with hollow glass spheres. Images with varying particle image densities were acquired 
from both setups and analyzed using the ABD method. The results from both cases show a linear 
relationship between the mass added and the estimated particle image density. A comparison between 
the ABD method and the local maximum method was made. Both methods provided similar results for 
lower seed density, but the local maximum method became less reliable as the amount of overlapping 
particles increased. 

 
Figure 3: Estimated seeding density as a function of the total mass of seed particles added to the water. 
Values are shown using (a) three different particle image diameters and (b) three different image 
intensities. The solid lines with the solid symbols represent the average particle image density 
calculated using the ABD method. The dashed and dotted lines with the open symbols represent the 
average particle image density estimates from the LM method. Results obtained using 128 × 128 
pixel interrogation region. 
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The slope of the linear density relationship was found to be a function of the level of light incident on 
the camera sensor. A decreased level of intensity incident on the camera sensor, whether due to decreasing 
the laser intensity or aperture size of the lens, decreases the number of visible particles images and decreases 
the overall estimate of the particle image density. 

The present results were for PIV setups, for which only the particle image density is important. 
However, the ABD method should work for any image with diffraction-limited particles. It may also be a 
feasible method for determining actual particle density (as opposed to image density) with additional 
pre-processing of the images and calibration. 

 
Figure 4: A PIV image and the corresponding seeding density based on the ABD method (overlaid 
contours) for images acquired simultaneously from two cameras with differing bit depth. The color 
bar shows the particle image density in particles/pixel. Images are used with permission from Sandia 
National Laboratory. 

2.1.3 Experimental Validation 
To date, validation of the USM has been performed based on velocity statistics derived from a PIV 

measurement compared to hot-wire anemometer measurements. Comparisons based on instantaneous 
data rather than statics will be made in the near future. The flow field of a planar jet was measured with 
PIV and hot-wire anemometry. The effects of PIV uncertainty on the time-average velocity and the 
Reynolds normal stresses, were also assessed. 

Random uncertainty from these four sources affected the rate at which converged statistics were 
acquired. These errors are two-sided and, when sufficient data are obtained, a converged mean that 
agrees with the hot-wire solution was measured. However, the measurement noise increased the Reynolds 
normal stress reported by the PIV measurement system resulting in Reynolds normal stress levels 
that were overestimated. Of the four error sources, velocity gradients were the largest contributor to PIV 
random uncertainty. 

For pixel displacements of x ~ d , the measured mean velocity was strongly biased, while 
Reynolds normal stresses were significantly overestimated for x ~ 4d . This is due to a 
combination of decreased dynamic range for the smaller pixel displacements and sub-pixel 
interpolation uncertainties. 
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Figure 5: Profiles of the time-averaged velocity magnitude, u, using the hot wire and PIV algorithms 
(DaVis and PRANA) with 16 × 16 pixel interrogation regions for varying small displacements. 

The work presented did not account for through-plane motion, and some evidence exists as 
random through-plane motion increases, the performance of the method degrades. In principle, the 
uncertainty surface method could be extended to include these effects. In fact, the VT team has developed 
a method to measure through-plane motion that is described below. 

2.1.4 Current Status and Future Work 
The USM using four parameters (particle image size, particle image density, particle 

displacement and shear) is complete. In the near future, its results will be compared to those of the SNR 
and other methods. The primary weakness of USM is parameters that generate error but are not 
included in the surface. Primary among these is likely to be through-plane motion, which caused a loss of 
correlation and can also generate errors to changes in particle illumination as particles pass through the 
Gaussian-shaped laser sheet (Nobach 2009). While this parameter is widely held to be important, it has 
not yet been included in the uncertainty surface since a method to measure through-plane motion with a 
single camera has yet to be developed. Mutual Information (MI), discussed in Section 5.2.3.3 below, has 
the potential to provide information about through-plane motions. Future work on the USM could include 
using MI as a 5

th parameter, or, as a replacement for one of the currently used parameters. 

2.2 Signal to Noise Ratio Uncertainty Method 
2.2.1 Objective 

In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of 
the particle image pattern superimposed on a variety of noise sources. The inherent amount of signal 
mutual information between consecutive images governs the strength of the resulting PIV cross 
correlation and ultimately the accuracy and uncertainty of the produced PIV measurements. Hence we 
posit that correlation signal-to-noise-ratio (SNR) metrics calculated from the correlation plane can be 
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used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. 
In this paper we present a framework for evaluating the correlation SNR using a set of different metrics, 
which in turn are used to develop models for uncertainty estimation. A new SNR metric termed “mutual 
information” (MI) which quantifies the amount of common information (particle pattern) between two 
consecutive images is also introduced and investigated. This measure provides a direct estimation of 
the apparent NIFIFO parameter of an image pair providing an alternative approach towards uncertainty 
estimation but also connecting the current development to one of the most fundamental principles of 
PIV and the previously established theory. The SNR metrics and corresponding models presented herein 
are expanded to be applicable to both standard and filtered correlations and the notion of “valid” 
measurement is redefined with respect to the correlation peak width. These advancements lead to more 
robust uncertainty estimation models, which are tested against both synthetic benchmark data as well 
as actual experimental measurements. For all cases considered here, expanded uncertainties are 
estimated at the 95% confidence level, and the resulting calculated coverages are approximately 95% 
thus demonstrating the feasibility and applicability of these new models for direct estimation of 
uncertainty for individual PIV measurements. 

2.2.2 Detail Description of the methodology 
In this work we adopt an alternative approach and we seek to quantify the PIV displacement 

uncertainty directly from the information contained within the cross-correlation plane. The cross- correlation 
plane represents the distribution of probabilities of all possible particle image pattern displacements 
between consecutive frames, combined with the effect of the number of particles, the mean particle 
diameter and effects that contribute to loss of correlation. As described by Adrian and Westerweel 
(Adrian and Westerweel 2011) (p. 322): “The height of the peak is proportional to the image density 
NI, the out of plane loss of correlation FO and the in-plane loss of correlation FI. The shape of the peak is 
determined by the convolution of the particle image self-correlation with the displacement distribution in 
the measurement volume.” In other words, the correlation plane is a surrogate of the combined effects of 
the various sources of error that govern the accurate estimation of a particle pattern displacement. Hence, 
in this work we will seek to establish appropriate measures that quantify the cross-correlation quality by 
means of signal-to-noise ratio (SNR) and establish the relationship of these metrics to the individual 
measurement uncertainty. 

One measure of the cross-correlation SNR is the primary peak ratio (PPR), namely the ratio 
between the highest correlation peak to the second tallest peak as shown in Figure 6. In early PIV papers, 
PPR was used as a measure of the detectability of the true displacement (Keane and Adrian 1990b, 
Keane and Adrian 1991). A measurement would be considered as valid if PPR were higher than a user 
defined threshold (often 1.2), or the measurement is rejected if PPR is smaller than that value. Based on 
this criterion, it was established that the product of NIFIFO would determine the probability of getting a 
valid detection and in order to get a 95% probability of valid detection, the minimum NIFIFO value should 
be approximately 5 (Keane and Adrian 1992). Unfortunately, the effects of in-plane and out-of-plane loss 
of correlation are difficult to quantify in real experiment, thus making NIFIFO difficult to estimate in real 
experiment cases. However this establishes a clear relationship between a measure of the correlation strength 
(PPR) and number of correlated particle image pairs. 

The PPR value is easy to compute and provides a practical measure of the quality of a 
cross- correlation. Hain and Kahler (Hain and Kahler 2007) suggest that a threshold PPR value of about 2 
can reliably avoid spurious vectors, and based on this they proposed a scheme for the optimal selection of 
cross-correlations across a range of interframe time delays. Similarly for extending the PIV velocity 
dynamic range using multiple pulse separation imaging, Persoons and O’Donovan used a weighted 
peak ratio value as a criterion to calculate the optimum pulse separation (Persoons and O’Donovan 
2010). 
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Recently, Charonko and Vlachos proposed an uncertainty quantification method based on PPR 
(Charonko and Vlachos 2013). The relationship between the distribution of velocity error and PPR value 
was studied and a model for calculating the uncertainty based on the PPR value of a given measurement 
was developed. Using this method, the uncertainty of PIV measurement can be predicted without the 
a-priori knowledge of image quality and local flow condition. Reliable uncertainty estimation results using 
a phase-filtered correlation (Eckstein, Charonko et al. 2008, Eckstein and Vlachos 2009) were shown. 
However for standard cross-correlation techniques, the uncertainty estimation provided by this method 
is not as good. This was attributed to the insufficient treatment of noise effects inherent in the standard 
cross-correlation. 

 
Figure 6: Left: Single cross-correlation peak with high probability of accurate detection. Right: Two 
primary peaks in the correlation plane. The closer the peak heights are with respect to each other, 
the lower the probability of accurate detection. 

Beyond the PPR other metrics exist for quantifying the cross-correlation SNR. Kumar and 
Hassebrook defined several signal to noise ratios of the correlation related to peak detectability, namely 
peak ratio (PPR), peak-to-root mean square ratio (PRMSR), and peak-to-correlation energy (PCE) 
(Kumar and Hassebrook 1990). All three of these metrics measure the strength of correlation but the PPR 
is a mostly heuristic parameter while in contrast the PCE and PRMSR are more fundamental routed to 
signal processing theory (Kumar and Hassebrook 1990). However, within the scope of PIV methods, 
neither PCE nor PRMSR have been considered. 

In this work, we will extend the original work by Charonko and Vlachos (Charonko and Vlachos 2013) 
to calculate cross-correlation SNR metrics using only the information from the correlation plane to develop 
models for uncertainty estimation. Here, in addition to the PPR, we will consider PRMSR and PCE 
and cross-correlation entropy (based on information entropy ([Shannon 2001]) and we expand the 
previous work to make these measures applicable to both standard and phase filtered cross-correlation. 
More importantly, we develop a new metric we term “mutual information” (MI) that we hypothesize 
provides a direct estimation of the apparent NIFIFO for each image pair. This metric also will be used to 
develop a model for uncertainty estimation but in contrast to the other models that are adopted from the 
generic signal processing literature; MI directly connects to the fundamental PIV principles. 

Details of the definition and calculation of these metrics will be provided in the following 
section. The relationship between velocity error distribution or standard uncertainty and each metric are 
obtained by statistical analysis. The functions used to quantify each relationship are calculated from curve 
fittings. 

2.2.3 Background and Methodology 
2.2.3.1 Correlation Plane Signal to Noise Ratio (SNR) 

The random correlation peaks distributed along the correlation plane correspond to correlations 
between distinct particle image pairs. A valid displacement measurement is achieved when the highest 
detectable peak in the plane represents the true displacement. As a result, the strength (detectability) of 
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the primary peak with respect to surrounding peaks represents the signal to noise ratio of the 
correlation plane. Hence following the work by Kumar and Hassebrook (Kumar and Hassebrook 
1990), measures of the correlation SNR can be defined and are shown in Table 1. These include the 
PPR, PRMSR, and PCE. Table 1 also provides the definitions of these filters and a one-dimensional 
graphical representation. 

Table 1: Definition, separate parts and 1-D example of PPR, PRMSR and PCE. 

 
Effectively all three of these metrics measure the detectability of the primary peak with respect to 

alternative correlations. However, in contrast to the PPR which is an ad-hoc metric, the PRMRS 
and PCE are amenable to analytical derivation if the signal statistical properties are known (Kumar 
and Hassebrook 1990), hence they offer the potential for developing a corresponding theoretical 
foundation for the uncertainty estimation. This aspect however will not be pursued during this work. 

Another signal to noise ratio measure considered herein is the cross-correlation entropy or 
information entropy (Shannon 2001). This is based on the notion that if perfect matching between two 
image patterns exists in the absence of any noise, the correlation will yield a single sharp peak and the 
correlation entropy will be minimal. As more random correlations exist the entropy would increase. To 
calculate the entropy of the cross correlation plane, we first construct the histogram of the correlation 
plane based on the correlation value of every point on the plane. In our work, we use 30 bins to build 
the histogram. After the histogram is made, the probability of finding one point in a certain bin is 
calculated as: 

 
Then the entropy of the cross correlation plane was calculated as: 

 (1) 
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2.2.3.2 Role of Image Background Noise on Correlation SNR 
The information about the true displacement in the correlation plane is contained in the correlation of 

the fluctuating intensities. If the correlation is written as: 

R s,t RC s,t RF s,t RD s,t

where the overall correlation plane is decomposed into RC RF and RD which are respectively the correlation 
of the mean background intensity over the interrogation windows, the correlation of the background noise 
in one window with the fluctuating intensity in the other window, the cross correlation of the fluctuating 
image intensities. It is common practice to subtract the image mean intensity before preforming a 
cross-correlation, which would effectively remove all contributions from the background and only provide 
RD. However in practice this does not always hold true due to various illumination effects and imaging 
distortions. Although for the estimation of the true displacement such residuals would have negligible 
effect, in contrast for the calculation of the correlation SNR they can profoundly affect the metrics. In 
the work by Charonko and Vlachos (Charonko and Vlachos 2013) the standard correlation which was 
subject to this effect performed inferiorly to the phase filter correlation which in turn is largely 
immune to such effects. Hence in order to address this limitation and provide more robust estimation 
of the different correlation metrics we propose that it is appropriate to subtract the minimum value of the 
correlation plane. This is demonstrated below. 

Figure 7a and b shows an example of a particle image with and without background noise. The cross 
correlation plane of these two image sets are shown in Figure 8a and b. The minimum correlation 
value of the cross correlation plane is on the order of 106. After we subtract the correlation plane of 
Figure 8b (RD) from Figure 8a (R), the left plane Figure 8c can be considered as the correlation related to 
background image noise, the RN term. The mean value of this plane is also close to 106. Subtraction of the 
minimum correlation value from the correlation plane effectively eliminates the effect of background image 
noise on the cross correlation plane. 

 
Figure 7: Particle image sets examples (a) with background noise; (b) same particle images without 
background noise 

 
Figure 8: (a) cross correlation plane of particle images with background noise (b) cross correlation 
plane of particle images without background noise (c) the correlation plane related to background 
noise 
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2.2.3.3 Mutual Information (MI) and relationship to NIFIFO 
As discussed earlier, the correlation peak height is proportional to the product of the image 

density NI, the out of plane loss of correlation FO and the in-plane loss of correlation FI, and the 
shape of the peak is determined by the particle image self-correlation and displacement distribution. 
Based on this insight we introduce a new measure of the correlation SNR, which we term Mutual 
Information (MI). MI is defined as: 

 
MI provides the means to directly calculate the NIFIFO from the information contained within the 

correlation plane. The calculation of the MI is based on dividing the peak magnitude of the 
cross-correlation by the autocorrelation of the “mean” particle as measured by the diameter of the 
image autocorrelation. A schematic of the calculation flow chart is shown below (Figure 9). 

 
Figure 9: Schematic illustrating the calculation of MI. 

The image of one representative particle can be written as: 

 (3) 

where J0 and d0 are the intensity and diameter of the particle, xp and yp are the particle center 
coordinates. Then the autocorrelation can be calculated as: 

 (4) 
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The autocorrelation peak height is the magnitude of autocorrelation plane: 

 (5) 

We can write the analytical form of the cross correlation plane for Image 1 and Image 2 as: 

 (6) 

I1 and I2 are the expressions for Image 1 and 2, with removing the background image noise effect we 
can consider the image as the summation of all particles within the window area: 

 (7) 

 (8) 

where p1 and p2 are the number of particles in Image 1 and 2, Ji and di are the intensity and 
diameter of the ith particle. 

As mentioned before, the cross correlation peak can be considered as the summation of the 
autocorrelation of all correlated particles in both. By assuming the correlated particles in Frame 1 and 
Frame 2 are identical (Ji1 = Ji2, di1 = di2), we can show that the primary peak height of the cross 
correlation plane is: 

z  (9) 

where pc is the number of correlated particles in both frames, Ji and di are the intensity and 
diameter of the ith particle. Thus the number of correlated particle pairs or the amount of mutual 
information between consecutive frames (MI) can be estimated as: 

 (10) 

It is clear then that in the case where every correlated particle has the same intensity and 
diameter as the reference particle (Ji=J0, di=d0), then MI will be equal to pc. For interrogation regions 
where the particle size and brightness varies, the contribution of each particle will be proportionally 
weighted in terms of their effect on the final correlation signal. 

2.2.3.4 Correlation Width and Valid Measurements 

The primary peak diameter can be calculated by (Adrian and Westerweel 2011): 

 (11) 
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where d  is the particle image diameter and a is a gradient parameter. But for given a correlation 
plane, the correlation peak width is usually calculated by performing a three-point Gaussian fit and 
then computing the diameter as 4 times the standard deviation for that Gaussian distribution. The 
location of the maximum value of that Gaussian distribution provides the sub-pixel displacement 
estimation for the PIV measurement. This is subject to the assumption that the true displacement is 
within the primary peak region. Thus, if the difference between the measured displacement and true 
displacement (error) is less than half of the peak diameter, the measurement should be considered 
as valid because the peak corresponds to the true displacement. However, previous works often use 
a fixed threshold value for detecting the failed measurement or outliers. Outliers are identified if the 
difference between the measured value and true value is larger than a pre-determined value, for 
example 0.5 or 1 pixel, regardless if the correct peak is detected or not. By using this criterion, the 
conventional definition of outliers is inconsistent with the notions of error and uncertainty. Namely, a 
wide peak at a location corresponding to the true displacement although it could yield errors in 
excess of 1 pixel, it would still be accurate but it will not be precise. Hence, using the traditional 
definition would inhibit the development of models for uncertainty quantification. Instead, we 
suggest that the criterion for a valid measurement should be based on the diameter of the correlation 
peak. If the error is less than half of the peak diameter, we conclude that the measurement successfully 
found the correct peak and it is indeed a valid measurement. Only those measurements providing the 
wrong primary peak are considered as invalid. An example of this “half peak diameter” criterion is 
shown in Figure 10. Note that the concepts of valid measurements versus outliers are different and 
distinct. An outlier is determined by statistical comparison with its neighbourhood while a valid or 
invalid measurement should be based on an independent assessment of the measurement’s success 
or failure, regardless of the statistical properties of the neighbourhood in which it is located. Using this 
model, a peak that has a width wider than a single pixel due to contributions of the particle size and 
a large shear gradient may be correctly identifying the velocity distribution within the interrogation 
region even if the highest point within that peak is located more than one pixel away from the 
velocity value at a location in the center of the correlated image. Thus, it should not be counted as a 
failure, but should be instead included as a valid measurement but with a larger than normal uncertainty. 

 

(a) (b) 

Figure 10: 1-D example of half peak diameter criterion (a) good measurement; (b) outlier. 
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2.2.3.5 Synthetic Image Sets 
Synthetic image sets with known displacements information were used to develop the relations 

between the uncertainty or error distribution and the measured metrics’ value. 

Taylor vortex 

The first data set is 100 image pairs of an ideal Taylor vortex flow field as was previously used by 
Charonko and Vlachos (Charonko and Vlachos). The vortex is located at the center of the image. The 
maximum circumferential velocity is umax = 4 pixels/frame at distance of R0 = 128 pixels from the 
center. The velocity profile is given by: 

 (12) 

The image size is 1024×1024 pixels. Particles in the images are Gaussian with 3-pixel diameter at the 
4 standard deviation level and had 8-bit intensity resolution. Seeding density is 20 particles per 32 × 2 pixel 
window on average. 

Turbulent boundary layer 

The second data set is 100 image pairs of turbulent boundary layer flow field (Case B of the 
Second International PIV challenge in 2003 [Stanislas, Okamoto et al. 2005]). The image quality is: 
70 particles pairs per 32 × 32 region with 2.6 pixel average particle diameter at the 4 standard deviations. 

Laminar separation bubble 

The last data set is 18 image pairs of laminar separation bubble flow field (Case B of the Third 
International PIV Challenge in 2005 [Stanislas, Okamoto et al. 2008]). 25 particles per 32 × 32 window 
is the average seeding density of this data set. The average particle diameter is about 2.0 pixels. 

2.2.3.6 Statistical Analysis and Uncertainty Estimation 
After we got the value of metrics mentioned before and the error of all the vectors in the three 

synthetic image data sets, we divided all the data points into 40 bins based on the value of the 
calculated metrics. Previous work has shown that the difference between the absolute magnitudes of 
mean velocity error and absolute mean error plus the standard deviation was very small (Eckstein and 
Vlachos 2009), justifying the continued use of the definition of from that work for the error distribution 
calculation. In each bin, the rms v is calculated as: 

 (13) 

where N is the number of data points in the ith bin. 

Measurement errors were first estimated at the standard uncertainty level, which should reflect one 
standard deviation level for the parent population of possible errors from which the true error on some 
measurement of the metric is drawn without respect of the exact shape of that distribution. The expanded 
uncertainty was calculated by making the assumption that all errors were drawn from normal 
distribution and the large sample assumption applied. We multiplied the standard uncertainty by a 
coverage factor, tCI to get the expanded uncertainty. In this work we took t95 = 2.0, which means the true 
value of the measured quantity lies within a range bounded by the measured value plus or minus the 
expanded uncertainty (twice the standard uncertainty) 95% of the time. If the uncertainty model is 
correct, 95% of all data points will have a velocity error within the provided uncertainty range. 
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2.2.4 Experimental Validation 
2.2.4.1 Result and Discussion 

Mutual information (MI) 

As mentioned above, the MI is a more general form of NIFIFO combining the effects of particle 
intensity and diameter. To further prove the above idea, PIV standard image sets (Okamoto, Nishio et 
al. 2000) were tested to show the relationship between MI and NIFIFO. This data set was selected 
because in addition to the true velocity, the position and diameter of each particle in the image were also 
reported, which was necessary for a comparison between the two metrics. As mentioned before, 
different particles contribute differently in building the correlation plane, and thus the number of 
correlated particles (NIFIFO) must be scaled by the particle intensity and diameter within each window. 
The result is shown in Figure 11. The X-axis shows the value of MI and the Y-axis shows the value of 
intensity scaled NIFIFO. It is clear that most of the results are aligned along the white dash line 
corresponding to MI = NIFIFO supporting the notion that the MI provides a direct estimate of the apparent 
NIFIFO for an individual image pair. 

 
Figure 11: Mutual Information (MI) VS NIFIFO. Color represents number of measurements in each bin. 

The relationship between the mutual information and the distribution of velocity error for Case B of 
2003 PIV Challenge using standard cross correlation method with 32 × 32 window size is shown in 
Figure 12. Details of statistical analysis and error distribution calculation are provided in (Charonko and 
Vlachos). The scatter plot shows all the combinations of MI and error. It is obvious that large errors 
are expected when the MI value is small. As shown in the plot, almost no measurement had both large 
error and high MI value in this special case. Moreover, MI shows a 95% valid detection probability for MI 
values larger than 5, which is consistent with previous findings for the valid vector detection probability 
versus NIFIFO (Keane and Adrian 1992). When the MI value is below 5, the probability drops rapidly. 
This result further supports that MI and NIFIFO are measuring the same properties of the PIV experiment. 



 

 86

 
Figure 12: Plot of the distribution of velocity error using SCC processing versus correlation peak ratio 
for the turbulent boundary layer images of the 2003 PIV Challenge. (blue scatter dot) the measured 
distribution of MI value and error of velocity magnitude; (red line) mean error of velocity magnitude 
on each MI value; (green line) valid detection probability on each MI value. 

2.2.4.2 Relationship of Uncertainty Versus Cross-Correlation SNR Metrics 
Uncertainty Estimation Model 

The uncertainty model which provides a relationship between any of the SNR metrics to the 
standard uncertainty is based on the fitting function proposed in (Eckstein and Vlachos 2009). Hence, the 
estimated standard uncertainty is calculated by determining the fitting parameters of the following 
equation: 

 (14) 

The first term is a Gaussian function used to account for the uncertainty due to invalid measurements 
which contribute uncertainty M, where the exact value of M is related to the range of possible velocity 
measurements and the distribution of the true velocity within the sampled flow field (Charonko and 
Vlachos). The ( -N) term allows the error to climb rapidly as the metric’s value approaches some 
small number, and N is the theoretical minimum value of the calculated metric. 

Based on the definition of each quantity, we can determine analytically what value of N we 
should use for each. For PPR, the minimum value is 1 when we have a primary peak and 
secondary peak with the same height. Based on the definition of PRMSR, when all points in Crms have a 
value of half the main peak height the theoretical minimum value for PRMSR is 4. The extreme case for 
PCE occurs when the peak is only slightly higher than the rest of the correlation plane, and the rest of the 
plane shares the same correlation value; in this case the PCE value is close to 1. Because entropy 
behaves the opposite way as other basic SNR metrics, we take the inverse of entropy ( i.e., =1/entropy 
to keep the fitting function type consistent among all metrics). The theoretical minimum value for 
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inverse entropy should be 0. The theoretical minimum value for MI is also 0 when no particles 
correlated between two consecutive image frames. 

The second term in equation 14 is the contribution to the uncertainty by the valid vectors, which 
means the largest uncertainty that could be expected would be governed primarily by A if it can be 
assured that the given measurement is valid. The last term C is a constant, which corresponds to the 
lowest uncertainty we can achieve. The estimated uncertainty for a measurement with a given calculated 
metric value is governed by the combination of the above three terms. 

Although outliers were detected by using the new half peak diameter rule described earlier, it is not 
appropriate to develop a model for uncertainty estimation using only the valid measurements. Unlike 
synthetic image sets, in real experiments the true velocity field is unknown and it is inevitable that 
velocity fields would be contaminated by invalid measurements. Therefore both invalid and valid vectors 
are included in developing the uncertainty model estimation. All three synthetic cases with 3 different 
window size (or effective window size for RPC method), 16 × 16, 32 × 32, and 64 × 64 were included in 
the test providing a sample containing 12 million data points. 

2.2.4.3 Results of Uncertainty Estimation 
In order to keep the calculation process consistent, we applied the minimum correlation value 

subtraction method as described earlier to both SCC and RPC. However, this method has a minimal 
effect on the RPC models since phase filtering is effectively immune to background noise effects. 
Figure 13 shows the curve fitting results for estimating the uncertainty using peak ratio with both RPC 
and SCC methods after the minimum subtraction. The corresponding curve fitting functions are: 

In the previously reported results for SCC processing, the fitted curve only partially agreed with the 
original data (Eckstein and Vlachos 2009). The current results shown in Figure 13a, show that the 
model fit provides agreement with the original data almost across the whole range, with R square value of 
0.98. The model for estimating uncertainty for SCC processing provides larger values by comparison to 
the RPC processing, but the relationships are now much more similar than they were in the previous 
work that did not use minimum subtraction. The green curves show the error distribution of velocity 
magnitude versus PPR of good vectors only. 
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(a) (b) 

Figure 13: Plots of the relationship of the calculated standard uncertainty on velocity magnitude 
versus peak ratio for both the (a) SCC, and (b) RPC, for all three synthetic image sets. (red line) 
original curve of uncertainty on velocity magnitude versus peak ratio; (blue line) three term function 
fitted curve; (green line) uncertainty on velocity magnitude versus peak ratio for only valid vectors. 

Figure 14 through Figure 16 show the curve fitting results for estimating the uncertainty using other 
basic SNR metrics with both RPC and SCC methods. The fitting functions are: 

 (17) 

 (18) 

 (19) 

 (20) 

 (21) 

 (22) 

All these functions agree that the uncertainty would be larger for the SCC than the RPC for the same 
value of each metric. It is interesting to note that the maximum uncertainty predicted for PRMSR and 
PCE can be as large as 20 pixels even for valid measurements for both SCC and RPC methods. Despite 
the theoretical minimum value for PRMSR and PCE, in fact the PRMSR and PCE value is typically 
hundred times higher than the theoretical minimum value, so the uncertainty for valid vectors would 
never be that high for real cases. All these functions showed an acceptable agreement with the raw data, 
and the corresponding R2 values for each function are shown in Table 2. 
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Table 2: R2 vale of all fitting functions. 

 PPR PRMSR PCE Entropy
SCC 0.98 0.99 0.99 0.98 

RPC 0.99 0.97 0.95 0.92 

 

 
Figure 14: Plots of the relationship of the calculated standard uncertainty on velocity magnitude versus 
PRMSR for both the (a) SCC, and (b) RPC, for all three synthetic image sets. (red line) original curve 
of uncertainty on velocity magnitude versus PRMSR; (blue line) three term function fitted curve; 
(green line) uncertainty on velocity magnitude versus PRMSR for only valid vectors. 

 
Figure 15: Plots of the relationship of the calculated standard uncertainty on velocity magnitude versus PCE 
for both the SCC, and (b) RPC, for all three synthetic image sets. (red line) original curve of uncertainty on 
velocity magnitude versus PCE; (blue line) three term function fitted curve; (green line) uncertainty on 
velocity magnitude versus PCE for only valid vectors. 
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(a) (b) 

Figure 16: Plots of the relationship of the calculated standard uncertainty on velocity magnitude versus 
Entropy for both the (a) SCC, and (b) RPC, for all three synthetic image sets. (red line) original curve 
of uncertainty on velocity magnitude versus Entropy; (blue line) three term function fitted curve; 
(green line) uncertainty on velocity magnitude versus Entropy for only valid vectors. 

The curve fitting for MI was done using all three synthetic data sets with only 32 × 32 window size, 
as shown in Figure 10. The fitting functions are: 

 (23) 

 (24) 

The R2 value is 0.99 for SCC model, and 0.98 for RPC model. The green curve shows the rms error 
of velocity magnitude only for valid vectors, which is almost linear in the logarithm domain. This 
fact further supports our assumption that the power-law term counts for uncertainty of valid measurements. 
It is interesting to note that the constant term in the SCC model is 0.05 pixels, which matches well with 
the widely accepted value about the expected accuracy of PIV measurements under ideal (simulated) 
conditions (Huang, Dabiri et al. 1997). The RPC function is similar to SCC with smaller error value. The 
curve for the RPC is not as smooth as the SCC one because in RPC processing the magnitude part of 
correlation which contains the particle image information is removed. As a result the MI value captures 
only the contribution of the loss of correlation and not the particle number density. This is a limitation of 
the current formulation that will be addressed in the future. 

The above equations are used for estimating the standard uncertainty using the corresponding 
metrics. This standard uncertainty was then mutiplied by a coverage factor of t95 = 2.0 to yield an estimate 
of the uncertainty at the 95% confidence interval using the large sample approximation for a normal error 
distribution. Finally, the percent coverage of the expanded uncertainty was calculated in comparison to 
the exact true error for each velocity measurement according to the following formula: 

 (25) 

The coverage should be close to 95% for the expanded uncertainty if the uncertainty estimation was 
correct on average. The exact values of coverage factor of all functions using all three synthetic data 
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sets with 16 × 16, 32 × 32 and 64 × 64 window sizes (for MI, we use 32 × 32 window size only) are listed 
in Table 3. All of the coverage factors are very close to 95%. 

 

(a) (b) 

Figure 17:Plots of the relationship of the calculated standard uncertainty on velocity magnitude versus 
MI for both the (a) SCC, and (b) RPC, for all three synthetic image sets. (red line) original curve of 
uncertainty on velocity magnitude versus MI; (blue line) three term function fitted curve; (green line) 
uncertainty on velocity magnitude versus MI for only valid vectors. 

Table 3: Coverage vale of all fitting functions with synthetic data sets 

 PPR PRMSR PCE Entropy MI 
SCC 95.9% 95.6% 96.1% 95.4% 95.7% 

RPC 94.9% 94.3% 94.7% 94.7% 96.0% 
 

2.2.4.4 Application to Real Flow Fields 
Our uncertainty models were further tested with real experimental data. In this work, we are using 

the same data set of stagnation plate flow used by Charonko and Vlachos (Charonko and Vlachos). The 
experimental details can be found therein. The details of calculating the time average field and then 
the uncertainty introduced by the fitting process were also described in (Charonko and Vlachos). 
Afterwards the combined standard uncertainty from both PIV correlation and the experimental fit for 
the “true” field is multiplied by a factor of 2 to yield the expanded uncertainty Utotal, and finally the 
coverage factor is calculated by the following formula: 

 (26) 

The exact values of coverage factor of each function using the real experiment data set with 
32 × 32 window sizes are listed in Table 3. Values of all coverage factors are close to 95%. 
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Table 4: Coverage vale of all fitting functions with real experiment sets. 

 PPR PRMSR PCE Entropy MI 
SCC 95.2% 94.0% 96.1% 94.1% 95.4% 

RPC 95.3% 95.1% 96.4% 94.7% 96.4% 
 

2.2.5 Important Findings 
In this report, we show that cross-correlation SNR metrics calculated exclusively from the 

correlation plane can be used to estimate the uncertainty of the PIV measurements. In the first part of 
our work, metrics of basic correlation SNR related to the peak detectability are introduced. We also 
develop a new metric termed Mutual Information (MI) to estimate the real and apparent NIFIFO directly 
from the calculated correlation plane. Both theoretical derivation and experimental results support that 
MI corresponds to the apparent NIFIFO and would be a practical measure of the correlation SNR with 
direct connection to the established PIV theory. A simple but consequential correction on the correlation 
plane is introduced using a minimum correlation value subtraction to remove the effect of the 
background image noise and thus improve the model’s performance for uncertainty estimation. 

The relationship between the uncertainty and the metrics of correlation SNR of individual 
velocity measurements were explored using both robust phase correlation (RPC) and standard cross 
correlation (SCC) method. The standard uncertainty is governed by a well-defined relationship between 
the correlation SNR using both methods. This relation is quantified using a three-term formulation for 
both processing methods. In the three-term function, the Gaussian distribution term is related to 
probability of occurrence of invalid measurements; the power-law term describes the primary behavior of 
the uncertainty versus the metrics; and a constant expresses the minimum expected uncertainty level for 
the corresponding methodology, regardless of value of the metrics. The formulas successfully predicted 
the expanded uncertainty coverage close to 95% over all three synthetic image sets as well as a 2D 
stagnation point real experiment case using all provided metrics using both SCC and RPC method. 

In conclusion, this paper provides a general framework of models for predicting the expected 
uncertainty levels for individual velocity measurement in a PIV flow field without the knowledge of local 
flow conditions using only the information contained in the calculated correlation plane. This work 
continues work establishing the foundations towards the growing understanding of PIV uncertainty 
estimation. 

2.2.6 Current Status and Future Work 
Ongoing work is focusing on the following three objectives: ( 1) expand signal to noise ratio 

method to provide uncertainty upper and lower bounds ( 2) develop a direct estimation of the 
uncertainty from the correlation surface and eliminate the need for an empirical model, and (3) expand 
the framework to stereoscopic planar (2D-3C) PIV data. 

2.3 Propagation of Uncertainty to Statistics 
Once uncertainties are in hand for each component of velocity at each location at each instant, these 

must be propagated into more useful quantities for CFD validation, such as the mean velocity and 
Reynolds Stresses. The Data Reduction Equations (DREs) for doing so are simply the definitions of the 
quantities of interest. One can propagate using either a Taylor Series Method (TSM) or a Monte Carlo 
Method (MCM) [cite Coleman and Steel]. Both methods have limitations. The Taylor Series Method 
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requires one to assume that all random errors are distributed normally, and that all uncertainties are 
symmetric about the nominal value. Unfortunately, the distribution of a quantity such as the square of a 
velocity cannot be normally distributed, since all values are >0. In Wilson and Smith (2013) it is 
shown that while the uncertainty bands of mean velocities computed from PIV measurements are 
generally close to symmetric about the mean, the uncertainties of Reynolds stresses are generally 
one-sided and negative (meaning that PIV tends to overestimate Reynolds stresses). The results of this 
study are independent of the method used to compute the instantaneous uncertainties and are 
incorporated into the PIV Stats code, which is available on the EFDL website. 

2.4 Propagation of Two-- Component Uncertainty to Three--
Component (Stereo) 

Since 3-component (stereo) Particle Image Velocimetry (PIV) velocity fields are derived from two, 
2-compnent (2C) fields, random uncertainties from the 2C fields clearly propagate into the 3C field. We 
have developed a framework and tools to perform such a propagation using commercial PIV 
software and the USM method, although the propagation works similarly for any 2C random uncertainty 
method. Stereo calibration information is needed to perform this propagation. As a starting point, a pair 
of 2C uncertainty fields is combined in exactly the same manner as velocity fields to form a 3C uncertainty 
field using commercial software. 

For a common PIV camera set up, the x-y plane coincides with the laser sheet plane with the 
z- direction is perpendicular as shown in Figure 18. The cameras view the laser sheet from angles 1 and 

2 taken normal from the laser plane. 

 
Figure 18: Uncertainty estimation using the Uncertainty Surface Method (USM). 

The x-velocities (V1x and V2x) and the y-velocities (V1y and V2y) viewed by Camera 1 and 2 are 
given by 

 (27) 

 (28) 

and 
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 (29) 

where Vx, Vy, and Vz are the velocity components based on the combination of both 2C measurements. 

Equations 27 and 28 solved for the 3C velocities Vx and Vz provide 

 (30) 

 (31) 

while Vy is simply the average of the measurements from the two cameras: 

 (32) 

The Taylor Series Method (TSM) for propagation of uncertainty is described in Coleman and Steele 
(2009). The data reduction equations are Eqs. 30-32 where Vx = V (V1x, V2x), Vy = V (V1y, V2y), and Vz  = V (V1x, 
V2x). The uncertainty in Vx is given by 

 (33) 

Inserting the partial derivatives of Vx from Eq. 30 results in 

 (34) 

Similarly the uncertainty in Vy and Vz are 

 (35) 

and 

 (36) 

By factoring the quantities within the square roots of Eqs. 33-35, they become 

 (37) 

 (38) 

and 

 (39) 

In this form, the square roots and squares in Eqs. 37-39 cancel, resulting in 

 (40) 

 (41) 

and 
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 (42) 

Therefore, the equations used to calculate the 3C velocities (Eqs. 30-32) are equivalent to those used to 
calculate the 3C uncertainties (Eqs. 40-42) when the velocity uncertainty is used in place of velocity. The 
2C uncertainties (Uv1x, Uv1y, and Uv2y,)  can be obtained by implementing the Uncertainty Surface Method 
(USM), or any other 2C UQ method. The angles are imbedded in the stereo calibration information for a 
polynomial fit calibration and are an output of a pinhole calibration. In the case of the polynomial 
calibration, DaVis may be used to perform the calculations in Eqs. 40-42 as outlined in Appendix B-1, B-2 
and B-3. 

Equations 30-32 are currently used in the PIV software package DaVis by LaVision to combine the 2C 
velocity fields into a single 3C velocity field when a pinhole calibration is used. In a similar fashion, 
the 2 × 2C uncertainty vector fields can be read into DaVis and combined using the same method as 
described in Figure 18. 
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Creating a New Uncertainty Surface 
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Appendix B-1 
Creating a New Uncertainty Surface 

To create a new uncertainty surface you will need the contents of the “Image and Surface Generator” 
folder, which contains a synthetic image generator “SIG_parallel”, and the two uncertainty surface 
generators “DaVisSurfaceGenerator.m” and “ PranaSurfaceGenerator.m”. 

3.1 Step 1: Generate the Synthetic Images 
Open “SIG_parallel.m” in MATLAB. The first several lines of the code explain how to use the code. 

You must specify: 

 If you want to code to run in parallel, and how many cores to use. 

 The parameter space (diameter, density, shear, and displacement. Mind the units!) i.e.: 

- parameters.DiaVals=[0.5 1.0 1.5 2.0 2.5 3.0 5.0 7.0]; %(pixels) 
- parameters.DenVals=[5 10 20 40 80]; %(particles/32x32 pixel region) 
- parameters.ShrVals=[0 0.04 0.08 0.12 0.18 0.25]; %(pixels/pixel) 
- parameters.DspVals=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]; %(pixels) (Only need subpixel 

displacements between 0 to 1) 
 A shift value (uncomment a shift value based on the final grid size you will use. Do not take into account 

% overlap). 

 If you want to add camera noise to the images. Timmins et al.[2010] showed camera noise can be 
neglected. (including noise will about double the space required to store the images) 

 The flow type (always use selection '1', the linear velocity gradient ) 

 Image size (chosen to provide appropriate number of vectors for convergence ~10,000) 

- parameters.rows1 = 128; 
- parameters.cols1 = 160128; 

 The save location for the images. The space required depends on parameter space. Larger diameters and 
densities generate larger files. The parameter space above takes about 70 GB.). 

Once these parameters are specified, run the code. (The parameter space above takes about 4 hours 
to generate using 6 cores.) 

3.2 Step 2: Process the “shifted” images in DaVis or PRANA 
Import the “shifted” images into DaVis. 

The first step in your DaVis operations list needs to be “copy and reorganize” with the Operation set as 
“create multi-frame buffer from time series”. In the operation list under the “create multi- frame buffer...” 
select Parameter and on the Mode dropdown select “create (n/2) image: 1+2, 3+4, 5+6...”. 

Next specify the PIV operations and settings you wish to use when you process your actual data. 
However, DO NOT USE % OVERLAP. It is okay if you want to use % overlap when you process 
your data, but for the sake of keeping the vectors from the synthetic images independent, do not include 
overlap. Make sure that you save your operations list or record the settings for future reference. This 
new uncertainty surface you generate should only be used on PIV data processed using these specific 
settings. 

Process the synthetic images. 

Similar steps should be followed when using PRANA. 
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Note: Generating the synthetic images takes considerable storage space. Importing them into DaVis 
copies and converts the png files into single image im7 files. These single im7 files are paired up, thus 
making another set of images. Once all is said and done you only need the combined im7 files for 
DaVis (or the single png files for Prana). For example, if you are using DaVis, once the single im7 have 
been combined using the “create multi-frame buffer from time series”, you can delete the png and single 
im7 files. I would suggest keeping the combined im7 files if you plan on making more surfaces in the 
future using different PIV operations. 

3.3 Step 3: Generate the surface 
Going back to MATLAB, open the code titled “DaVisSurfaceGenerator.m” or 

“PranaSurfaceGenerator.m”, depending on what PIV software you used. There are only 4 variables you 
need to specify before you run the code 

1. VecRow - uncomment the variable “VecRow” that corresponds to the size of your final grid resolution 
(you should not have used % overlap when processing for reasons mentioned above). 

2. path_name - This is the directory of the PIV vector files (vc7 for DaVis, .m for PRANA). For example: 

path_name = 'D:\CalibrationImages\CreateMultiframe\SelfCalBalPin\' 

3. key_loc - This is the directory of the “Key.m” file. When the synthetic images are generated a file called 
“Key.m” is generated that contains the parameters for each synthetic image. If you accidentally deleted 
the key you can generate a new one by running the first part of the SIG_parallel code (using the same 
parameters). Place a break- point after the point where the Key is saved (~line 160) and run the code. 

4. SurfName - This is the name of the new surface (i.e., 'PIVuncertainty_DaVis.mat') 

This surface can be loaded into the PIVuncertainty code and used to estimate the PIV measurement 
uncertainty. It may be a good idea to store the new surface in a folder along with information about the 
PIV settings used to create it (like the operation list from DaVis, or the experimental summary from 
PRANA). 

3.4 Step 4: Estimate the PIV measurement uncertainty 
See document: “Using PIVuncertaintyCode.” 

Questions? Contact me at scottowarner@gmail.com 
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Appendix B-2 
Using PIVuncertaintyCode 

PIVuncertaintyCode.m is a code written in MATLAB used for estimating the uncertainty in PIV results 
using the USM. Three files are required to run the code, and they are as follows: 

 PIVuncertaintyCode.m (Main Code) 

 PIVuncertaintyGUI.m (GUI code) 

 PIVuncertaintyGUI.fig (GUI figure) 

 DiaDen.m (Sub Function) 

 PIV_Stats.m (Sub Function) 

 A custom uncertainty surface (ie. PIVuncertainty_DaVis.mat). If you do not have one, see document 
titled “Creating a New Uncertainty Surface.” 
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To run the code using the GUI, open PIVuncertainty.m in MATLAB and click run or press (F5). The 
following window will open as shown: 

 
To begin a new job, select the job menu and select New. Type in a job name as directed. The new 

job name will appear in the Parameters section in the “Job Name” text box as well as in the Job List area. 

Parameters Section: 

Select which uncertainty surface to use (click the “surface” button, navigate to, and select the 
surface you wish to use). Note: each surface is unique for the parameters used to process your images. 
Before using this code, confirm that the surface you are using was generated for the way you wish to process 
your data. 

Enter the time between images “dt (μs)” and the length conversion “Scale (μm/pix)” in the units 
specified. If you are using im7 and vc7 files, you may click the “DaVis” button and auto fill these 
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sections once you have loaded your im7 and vc7 files. Verify that the values entered are correct before 
proceeding. If the button does not work, manually enter these values. If your images and vector files are 
in pixel units and you wish the uncertainty values to be in pixels, you can leave these values as 1. 

Select Run in Parallel if multiple cores are available and you wish to save time. Enter the 
number of cores you wish to use in corresponding text box. 

Select Background Image Removal to subtract a background image (this is based on the minimum 
value for each pixel over time). This is recommended as it removes many negative effects of noise. 

If you wish to calculate the particle image density and diameter, select the grid size you wish to use 
(recommended 64 × 64 or larger). If you are not interested in calculating the Diameter or Density and 
have an estimate of what it should be, check the “Hardcode Particle Density” or “Hardcode Particle 
Diameter” box and enter in the estimate in the corresponding text box in the units shown. 

Loading Images: 

To load images click on the button next to the “Image File Directory” text box. Select the first image 
you wish to use. 

The remaining text boxes in the “Images” section will auto-populate according to the first image you 
selected. If a images name is “B00001.im7”, the “Image Basename” is “B”, the number of “zeros” is “5” 
and the “extension” is “im7”. 

The “Image Correlation Step” is the difference between image pairs. For example, DaVis *.im7 files 
contain both images within the file so the “Image Correlation Step” is 0. If Image 1 is paired with image 2, 
than the “Image Correlation Step” is 1. 

“Frame Start” and “Frame End” are the first and last image in the set. 

“Frame step” is the difference between the first image of any two sequential image pairs. For 
DaVis this will be set to 1. For other images, such as when image 1 & 2 are a pair and 3 & 4 are a pair the 
“Frame Step” is 2. 

Once the text fields in the “Images” section are filled out you should see each pair of images in the 
“Image Pairs” section. If the “Image Pairs” section is red, recheck the values you have entered in the 
“Images” section. 

You can specify which image to use for the Dia/Den calculations. You can select frames 3 and 4 if you 
are using stereo im7 files (not currently working for other formats). 

Displacement Data: 

Follow the same procedure as the “Images” section. Ensure that the order of files found in the “Data 
Processing Order” section correspond to the image pairs found in the “Image Processing Order” section. 

If you are using split stereo VC7 files, you can select the vectors from Camera 1 or Camera 2. 

Output Section: 

Enter a base name for the result files in the “Output Basename” field (ie 'B' for files named 
B00001.mat, B00002.mat, etc). Results for each image pair and PIV results will be generated (for a list 
of variables see the appendix of this document). Select which type of output to generate (.mat files are 
always created due to their use in computing the vector statistics). Click on the button to the right of the 
“Output .plt/.mat Directory” section to select the output location. 
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Select “Compute Vector Statistics” to calculate statistics for the whole data set. These parameters 
include: averages, variances, and standard deviations of the u, v, and uv-magnitude velocities, the 
covariance, and average shear. Also provided are the uncertainty values (95%) for the previously 
mention values. (For a list of variables see appendix of this document or the beginning of the PIV_Stats.m 
code) 

If you have already ran data through the code but have not yet computed the statistics, fill out GUI 
information and check the box labeled “Only Compute Vector Statistics.” Selecting this option will 
forgo re-running all of the code and skip to the PIVstats portion. 

Computing vector statistics will produce a file called Ustats.mat in the location specified in the 
“Output Directory” text box. 

Job List: 

The Job list section shows all currently open jobs. Select a given job to view and change its 
settings. 

Execute Menu: 

To run a single job select the Execute menu at the top of the GUI and select “Run Job.” If 
multiple jobs are located in the “Job List” section and you wish to run them all, select “Run All” from the 
“Execute” menu. 

Additional Features of the Job menu: 

 Save a job set up you may save it as a mat file for future use. 

 Load a job you have saved. 

 Copy a currently open job. A box will appear, enter the new jobs name. 

 Delete a job from the job List. 

A typical job may appear something like this: 
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3.5 Addendum 
3.5.1 Input: from PIV Uncertainty (i.e., B00001.mat) 

 
3.5.2 Output: UStats.mat 
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3C USM Procedure 
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Appendix B-3 
3C USM Procedure 

This document outlines the procedure for computing 3C PIV uncertainty using the Uncertainty 
Surface Method (USM). In DaVis, stereo PIV is performed by first dewarping the images, 
processing each image pair to get two 2C vector fields, and combining the 2 × 2C vector fields to form a 
single 3C vector field. A similar procedure is performed to compute the 3C uncertainty and is outlined 
as follows: 

1. In DaVis, select your stereo images and go to processing. 

2. Operation 1: Using the same operation list you used to process your data, change stereo 
cross-correlation to sequential cross-correlation. Make sure “Use image correction” is selected. For 
each im7 file this provides a multi-frame buffer that contains 2 × 2C vector fields. 

 
Operation 2: Separate the multi-frame buffer into time series. 

 
3. The stereo images also need to be dewarped (corrected) and separated into im7 files with only 

2 images per file (instead of 4 images). This can be done by selecting the following operations: image 
correction (raw -> world) (found under image mapping group), then create time-series from 
multi-frame buffer (found under copy and reorganize frames), and finally create multi-frame buffer 
from time-series (also found under copy and reorganize frames) with Parameter Mode set to 
create(n/2) images: 1+2, 3+4, 5+6...as shown below. 
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4. Process the 2C vc7 files and dewarped 2C im7 files using the USM code (see previous documents on 

how to make a surface and process your data using the uncertainty code). This will give you a .mat file 
for each vc7 file. For best results when using Background Image Removal, process odd files separate 
from even files by using the Frame/File Start/Step boxes (i.e., Frame Start of 1 and Step of 2 will do 
odd and Frame Start of 2 and Step of 2 will do even files.). This will allow for background from 
Camera 1 and 2 to be calculated separately (instead of a single background for both cameras). 

5. Run the DaVisTXT_GUI.m code. This code saves data contained in the USM mat files to txt files that 
can be read into DaVis. Each txt file contains 4 columns for X, Y, UncertParamU(x,y), 
UncertParamV(x,y). There will be 4 times as many txt files as you do mat files (bias, upper random, 
lower random, and rr95). The final output is located in the Output directory specified by the user 
inside a folder titled “DaVisUncertTXT”. 

 
6. Load the TXT files into DaVis using the Import feature. The text files should show up as vector fields 

when selected. Select all the TXT files, click Add to list, and then Import Data. You must import the 
data into the same folder that contains you calibration information. The calibration is needed to 
perform the 2 × 2C to 3C operation. 
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7. Once the uncertainty vector fields are imported into DaVis they need to be recombined from time 

series to multi-frame. Set the mode such that images 1+2, 3+4, 5+6... are combined. (wait to click 
Start Processing. Two more operations need to be set up) 

 
8. Attributes need to be added to the imported data, otherwise the 2C to 3C operation will not work 

correctly. The difficult part is that there is no easy way to copy attributes from the original 2 × 2C 
velocity vc7 files to the recently imported uncertainty vc7 files. The attributes you need to add are 
CameraName0, CameraName1, FrameProcessing0, and FrameProcessing1, the others seem to 
have no effect on the final 3C results. To get these attributes, click on the original 2 × 2C vc7 files 
(from Step 2: operation 1) and go to processing and select the operation attributes then add/modify 
attributes then select Parameter. Click the dropdown menus and select the four attributes. The 
information will populate the right hand side (similar to what is shown below). 
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Now exit and click on the multi-frame uncertainty vc7 files and go to processing. The attributes from 

the previous vc7 files are still present. (If for some reason you didn't save the files from step 2, repeat 
step 2 (Operation 1) for a single file and use it to get the above attributes.) (wait to click Start Processing. 
One more operation need to be set up) 

9. The final step is to convert the 2C vector fields into a 3C vector field. For the next operation select 
vector properties and then convert 2x2D vector fields to 1x stereo vector field. 

 
Under Parameter select an error value. Make sure to do this as the default value is 0 and will result in 

an error. 

10. Now there should be 3 operations in the Operation list: 

 
Click Start Processing to get the 3C uncertainty parameter vector fields. 

11. There should now be 4 times as many uncertainty vc7 files as there are stereo vc7 files. Run the 
PIV_stats3C_GUI.m code. Load the stereo vc7 files and select the location of the uncertainty vc7 
files. 

NOTE: If you are working out of multiple folders you can run the code 

PIV3C_vec2mat_GUI.m. This will process all jobs and save the 3C data as sequential .mat files. 
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The Stats code outputs 2D matrices containing: 

 
This process has been tested using velocities instead of uncertainties to arrive at the same 

answer that DaVis provides when performing stereo PIV. The average error was less than 
0.00001 pixels with a standard deviation of 0.0016 pixels. 

An alternate Step 1 would be to take your already processed stereo data and convert it into 2 x 2C 
vector fields. I checked this method by simply importing the 2 × 2C velocity fields (rather than 
uncertainty) to try to arrive at the same 3C solution obtained by way of stereo PIV. When I used the 
velocity fields from sequential cross correlation the final 3C vector field matched the stereo results 
better than when I used the 2 × 2C fields obtained by separating the stereo result. 
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